On the Kronecker Structure of linearization of Cubic Two-Parameter Eigenvalue Problems

Main Article Content

Niranjan Bora
https://orcid.org/0000-0002-3729-5848
Bharati Borgohain
https://orcid.org/0009-0007-3475-5267

Abstract

Linearization is a classical approach to study matrix polynomial of the form P(lambda)=Sum lambdaj Aj, where A j Cnxn .  It converts  into a matrix pencil of the form L(lambda)=A+lambda B  of high dimension, where A and B are matrices over C , and lambda is the spectral parameter. In this paper we consider Cubic two-parameter eigenvalue problems ( CTEP) and study three different linearization process of the problem. Usinglinearization techniques, CTEP  is first converted into a linear two-parameter eigenvalue problem(L2EP)  of coefficient matrices of different sizes. The main advantage of these linearizations lies in the fact that, after transforming them into suitable linearized forms, existing numerical techniques for linear multiparameter eigenvalue problems (LMEP)  can be applied to CTEP  without solving the original problem. While solving  CTEP by formulating suitable linearizations, several transformations are generally used. In the current paper, it is also intended to report on these transformations, which have not been studied completely due to the complexity of their Kronecker structures.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bora, N., & Borgohain, B. (2025). On the Kronecker Structure of linearization of Cubic Two-Parameter Eigenvalue Problems. Malaysian Journal of Science, 44(1), 70–86. https://doi.org/10.22452/mjs.vol44no1.9
Section
Original Articles

References

Atkinson FV. (1972). Multiparameter eigenvalue problems, Academic Press, New York.

Bueno MI., Dopico FM., Furtado S., MedinaL. (2018). A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error, Calcolo, 55: 32.

CoxD., Little J., O’shea D. (1998).Using Algebraic Geometry, Springer Verlag, New York.

Das RK., Alam R. (2019). Automatic recovery of eigenvectors and minimal bases of matrix polynomials from generalized Fiedler pencils with repetition, Linear Algebra Appl. 569, 78-112.

Das B.(2020). Linearizations and distance problems associated with matrix polynomials, Ph.D. thesis, IIT Guwahati, India.

Dmytryshyn A., Johansson S., Kagström B., DoorenPV. (2020).Geometry of Matrix Polynomial Spaces, Foundations Comput. Math. 20, 423-450.

Dong B. (2022). The Homotopy Method for the Complete Solution of Quadratic Two-parameter Eigenvalue Problems, J. Scientific Comput. 90:18.

DoorenPV. (1997). The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra Appl. 27, 103-141.

GohbergI., LancasterP., RodmanL. (2009). Matrix Polynomials, Society for Industrial and Applied Mathematics, Philadelphia.

Henderson HV., Pukelsheim F., Searle SR. (1983).On the history of the kronecker product, Linear Multilinear Algebra 14, 113-120.

Higham NJ., Mackey D.S., Tisseur F.O. (2006).The Conditioning of Linearizations of Matrix Polynomials, SIAM J. Matrix Anal. Appl. 28(4), 1005-1028.

Hochstenbach ME., Muhič A., Plestenjak B. (2012). On linearizations of the quadratic two-parameter eigenvalue problems, Linear Algebra Appl. 436(8), 2725-2743.

Hochstenbach ME., Kosir T., Plestenjak B. (2005). A Jacobi-Davidson type method for the nonsingular two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl. 26, 477-497.

Hochstenbach ME., MuhičA., Plestenjak B. (2015)Jacobi–Davidson methods for polynomial two-parameter eigenvalue problems, J. Comput. Applied Math. 288, 251-263.

Hochstenbach ME., Košir T., Plestenjak B. (2005)A Jacobi-Davidson type Method for nonsingular two-parameter eigenvalue problem,SIAM J. Matrix Anal. Appl. 26(2), 477-497.

Hochstenbach ME., Muhič A., Plestenjak B. (2015)Jacobi-Davidson methods for polynomial two-parameter eigenvalue problems, J. Comput. Applied Math. 288, 251-263.

Jarlebring E., Hochstenbach ME. (2009). Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations, Linear Algebra Appl. 431, 369–380.

Khazanov VB. (2007). To solving spectral problems for multiparameter polynomial matrices, J. Math. Sci. 141, 1690-1700.

Košir T., Plestenjak B. (2022).On the singular two-parameter eigenvalue problem II*. Linear Algebra Appl. 649, 433-451.

Kressner D., Glibić IŠ. (2023). Singular quadratic eigenvalue problems: Linearization and weak condition numbers, BIT Numer. Math., Article no. 18.

Lancaster P. (2008). Linearization of regular matrix polynomials, Elect. J. Linear Algebra. 17, 21-27.

Lancaster P., Zaballa I. (2021).Spectral theory for self-adjoint quadratic eigenvalue problems - a review, Elect. J. Linear Algebra. 37, 211-246.

Mackey DS., Mackey N., Mehl C., Mehrmann V. (2006). Vector Spaces of Linearizations for Matrix Polynomials, SIAM J. Matrix Anal. Appl. 28(4), 971-1004.

Meerbergen K., Schröder C., Voss H. (2013). A Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations, Numer. Linear Algebra Appl. 20(5), 852–868.

Muhič A., Plestenjak B. (2009). On the singular two-parameter eigenvalue problem, Elect. J. Linear Algebra 18, 420-437.

Muhič A., Plestenjak B. (2010). On quadratic two-parameter eigenvalue problems and its linearization,Linear Algebra Appl. 432, 2529-2542.

PlestenjakB. (2016).Numerical methods for nonlinear two-parameter eigenvalue problems, BIT Numer. Math. 56, 241–262.

Plestenjak B. (2017). Minimal determinantal representations of bivariate polynomials, Linear Algebra Appl. 532, 550–569.

Plestenjak B., Hochstenbach ME. (2016). Roots of bivariate polynomial systems via determinantal representations, SIAM J. Scientific Comput. 38, A765–A788.

Tisseur F., Meerbergen K. (2001).The Quadratic Eigenvalue Problem, SIAM Rev. 43(2), 235-286.