Main Article Content

Manpreet Kaur
Sangeet Kumar
Jasdev Bhatti


The present paper presents the numerical conclusion to solve sixth order initial value ordinary differential equation (ODE). The concept of order conditions for three stage eighth order (RKSD8) & four stage ninth order Runge-Kutta methods (RKSD9) has been derived for finding global truncation error of differential equation The global and local truncated errors norms, zero stability of extended Runge-Kutta method (RK) is well defined and demonstrated with the help of an example.


Download data is not yet available.

Article Details

How to Cite
Kaur, M., Kumar, S., & Bhatti, J. (2023). SOLUTION OF ORDINARY DIFFERENTIAL EQUATION vvi (u)=f(u,v,v’,v’’,v’’’) USING EIGHTH AND NINTH ORDER RUNGE-KUTTA TYPE METHOD. Malaysian Journal of Science, 42(2), 33–40.
Original Articles


Abbas F., Abbas Al. Sh.( 2017). Solving initial value problem using Runge-Kutta 6th order method, ARPN Journal of Engineering and Applied Sciences, vol. 12(13): 3953-3961.

Abdi A., Hojjati G., Izzo G., Jackiewicz Z. (2021). Global error estimation for explicit general linear methods, Numerical Algorithms, doi:

Dormand J.R., El-Mikkawy M.E.A., Prince P.J. (1987). Families of runge-kutta-nystrom formulae, Institute of Mathematics and its Applications Journal of Numerical Analysis, vol. 7: 235-250.

Demba M. A., Ramos H., Kumam P., Watthayu W. (2021). An optimized sixth order explicit RKN method to solve oscillating systems,” Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones XVI Congreso de Matem´atica Aplicada, Gij on (Asturias), Spain, June 14- 18: 15-22.

Ghawadri N., Senu N., Fawzi F., Ismail F., Ibrahim Z. (2018). Diagonally implicit Runge-Kutta type method for directly solving special fourth order ordinary differential equations with Ill-Posed problem of a beam on elastic foundation, Algorithms, vol. 12: 1-10.

Hatun M., Vatansever F. (2016). Differential equation solver simulator for Runge-Kutta methods, Uludag University Journal of the Faculty of ˘ Engineering, vol. 21(1):145-162.

Huang B., Xiao A., Zhang G. ( 2021). Implicit-explicit runge-kutta-rosenbrock methods with error analysis for nonlinear stiff differential equations, Journal of Computational Mathematics, vol. 39(4): 569–590.

Islam M. (2015). A Comparative Study on numerical solutions of initial value problems (IVP) for ordinary differential equations (ODE) with Euler and Runge-Kutta methods, American Journal of Computational Mathematics, vol. 5: 393-404.

Khalid M., Sultana M., Zaidi F. (2014). Numerical solution of sixth-order differential equations arising in astrophysics by neural network, International Journal of Computer Applications, vol. 107(6):1-6.

Mohamed T., Senu N., Ibrahim Z., Long N.( 2018). Efficient two-derivative Runge-Kutta-Nystrom methods for solving general second-order ordinary differential equations y ′ (x) = f(x, y, y′ ), Discrete Dynamics in Nature and Society: 1-10.

Pandey P.( 2018). Solving numerically a sixth order differential equation as coupled finite difference equations approach, MedCrave, vol. 2(6): 1-11.

Sohaib M., Haq S., Mukhtar S., Khan I. (2018). Numerical solution of sixth order boundary-value problems using Legendre wavelet collocation method, Results in Physics, vol. 8: 1204-1208.

Turaci M., Ozis T. (2015). A note on explicit three-derivative Runge-Kutta methods (ThDRK), Bulletin of the International Mathematical Virtual Institute, vol. 5: 65-72.

Turaci M.O. (2021). Two-derivative Runge-Kutta type method with FSAL property, Journal of Modern Technology and Engineering, vol. 6(1):47-52.