MOLECULAR ANALYSIS OF SOME FORENSICALLY SIGNIFICANT DIPTERANS ASSOCIATED WITH DECOMPOSING PIG (SUS SCROFA) CARCASS IN IWO SOUTH-WESTERN NIGERIA USING THE COI GENE
Main Article Content
Abstract
Identification of many forensically important insects has been achieved using morphological keys with only a few relying on molecular techniques. Yet, information regarding the molecular identification of Dipteran flies from sub-Saharan Africa is scarce. Therefore, this study used the COI gene to analyze fly specimens collected from decomposing pig (Sus scrofa) carcasses in Iwo South-Western Nigeria. Several batches of eggs from carcasses were reared to adults and preserved in 75% ethanol for subsequent identification using molecular techniques in triplicate. A total of 450 bp sequences was obtained from BLAST analysis of the samples from the population, which has led to the identification of four families consisting of five species with the following breakdown: Sarcophaga africa (95.4%), Chrysomya putoria (99.1%), Chrysomya inclinata (98.3%), Tricogena rubricosa (89.6%), and Chirosia flavipennis (88.8%). The phylogenetic analysis identified Chrysomya chloropyga (AY139694) as the same as C. putoria and S. africa as the same as Sarcophaga cruentata, suggesting them as sister species. This study concluded that T. rubricosa and C. flavipennis are implicated in carrion decomposition, which provides crucial insights for forensic investigations
Downloads
Article Details
Transfer of Copyrights
- In the event of publication of the manuscript entitled [INSERT MANUSCRIPT TITLE AND REF NO.] in the Malaysian Journal of Science, I hereby transfer copyrights of the manuscript title, abstract and contents to the Malaysian Journal of Science and the Faculty of Science, University of Malaya (as the publisher) for the full legal term of copyright and any renewals thereof throughout the world in any format, and any media for communication.
Conditions of Publication
- I hereby state that this manuscript to be published is an original work, unpublished in any form prior and I have obtained the necessary permission for the reproduction (or am the owner) of any images, illustrations, tables, charts, figures, maps, photographs and other visual materials of whom the copyrights is owned by a third party.
- This manuscript contains no statements that are contradictory to the relevant local and international laws or that infringes on the rights of others.
- I agree to indemnify the Malaysian Journal of Science and the Faculty of Science, University of Malaya (as the publisher) in the event of any claims that arise in regards to the above conditions and assume full liability on the published manuscript.
Reviewer’s Responsibilities
- Reviewers must treat the manuscripts received for reviewing process as confidential. It must not be shown or discussed with others without the authorization from the editor of MJS.
- Reviewers assigned must not have conflicts of interest with respect to the original work, the authors of the article or the research funding.
- Reviewers should judge or evaluate the manuscripts objective as possible. The feedback from the reviewers should be express clearly with supporting arguments.
- If the assigned reviewer considers themselves not able to complete the review of the manuscript, they must communicate with the editor, so that the manuscript could be sent to another suitable reviewer.
Copyright: Rights of the Author(s)
- Effective 2007, it will become the policy of the Malaysian Journal of Science (published by the Faculty of Science, University of Malaya) to obtain copyrights of all manuscripts published. This is to facilitate:
- Protection against copyright infringement of the manuscript through copyright breaches or piracy.
- Timely handling of reproduction requests from authorized third parties that are addressed directly to the Faculty of Science, University of Malaya.
- As the author, you may publish the fore-mentioned manuscript, whole or any part thereof, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given. You may produce copies of your manuscript, whole or any part thereof, for teaching purposes or to be provided, on individual basis, to fellow researchers.
- You may include the fore-mentioned manuscript, whole or any part thereof, electronically on a secure network at your affiliated institution, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
- You may include the fore-mentioned manuscript, whole or any part thereof, on the World Wide Web, provided acknowledgement regarding copyright notice and reference to first publication in the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers) are given.
- In the event that your manuscript, whole or any part thereof, has been requested to be reproduced, for any purpose or in any form approved by the Malaysian Journal of Science and Faculty of Science, University of Malaya (as the publishers), you will be informed. It is requested that any changes to your contact details (especially e-mail addresses) are made known.
Copyright: Role and responsibility of the Author(s)
- In the event of the manuscript to be published in the Malaysian Journal of Science contains materials copyrighted to others prior, it is the responsibility of current author(s) to obtain written permission from the copyright owner or owners.
- This written permission should be submitted with the proof-copy of the manuscript to be published in the Malaysian Journal of Science
References
Ames, C., Turner, B. & Daniel, B. (2006). The use of mitochondrial cytochrome oxidase I gene (COI) to differentiate two UK blowfly species – Calliphora vicina and Calliphora vomitoria, Forensic Sci. Int. 164 :179–182.
Bosly, H. A. E. (2020). Molecular identification of Musca domestica L. from Jazan (KSA) based on partial mitochondrial cytochrome oxidase gene sequencing. Journal of Entomology, 17: 6-13.
Carvalho, C. J. & Mello-Patiu, C. A. (2008). Key to the adults of the most common forensic species of Diptera in South America Revista Brasileira de Entomologia 52(3): 390-406.
Guo, Y., Zha, L., Yan, W., Li, P., Cai, J. & Wu, L. (2013). Identification of forensically important sarcophagid flies (Diptera: Sarcophagidae) in China based on COI and period gene. International Journal of Legal Medicine, In press PUBMED 24101094.
Harvey, M. L., Gaudieri, S., Villet, M. H. & Dadour, I. R. (2008). A global study of forensically significant calliphorids: implications for identification. Forensic Science International Journal, 177 (1): 66-76. PUBMED 18295422
Harvey, M. L., Mansell, M. W., Villet, M. H., & Dadour, I. R. (2003). Molecular identification of some forensically important blowflies of southern Africa and Australia. Medical and veterinary entomology, 17(4), 363–369. https://doi.org/10.1111/j.1365-2915.2003.00452.
Jordaens,K., Sonet,G., Richet,R., Dupont,E., Braet,Y. & Desmyter,S. (2013). Reliability of long vs short COI markers in identification of forensically important flies. Int. J. Legal Med. 127 (2), 491-504 PUBMED 22960880
Kavitha, R., Tan, T. C., Lee, H. L., Nazni, W. A., & Sofian, A. M. (2013). Molecular identification of Malaysian Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) using life stage specific mitochondrial DNA. Tropical biomedicine, 30(2), 211–219.
Khoso, F. N., Tan, M. P. I., Talib, S. M. B. & Lau, W. H. (2015). Molecular Identification and Composition of Cyclorrhaphan Flies Associated with Cafeterias. Pakistan Journal of Zoology, 47(6): 1743-1752.
Kutty,S.N., Bernasconi,M.V., Sifner,F. & Meier,R. (2007). Sensitivity analysis, molecular systematics and natural history evolution of Scathophagidae (Diptera: Cyclorrhapha: Calyptratae). Cladistics 23 (1), 64-83.
Kutty,S.N., Pape,T., Wiegmann,B.M. & Meier,R.(2010). Molecular phylogeny of the Calyptratae (Diptera: Cyclorrhapha) with an emphasis on the superfamily Oestroidea. Syst. Entomol. 35 (4), 614-635
Lonsdale, H. L., Dixon, R. A. & Gennard, D. E. (2004). Comparison of the efficiency of mitochondrial DNA extraction and assessment in aged and modern dipteran samples. Forensic Analysis. Royal Society of Chemistry Conference University of Lincoln 20–22.
Lutz, L., Williams, K.A., Villet, M. H., Ekanem, M. & Szpila, K. (2018). Species identification of adult African blowflies (Diptera: Calliphoridae) of forensic importance. International Journal of Legal Medicine, 132:831–842
Marlgorn, Y. & Coquoz, R. (1999). DNA typing for identification of some species of Calliphoridae: an interest in forensic entomology, Forensic Sci. Int. 102 :111– 119.
Mashaly, A., Alajmi, R., Mustafa, A.E.Z., Rady, A. & Alkhedir, H. (2017). Species abundance and identification of forensically important flies of Saudi Arabia by DNA barcoding. Journal of Medical Entomology, 54: 837-843.
Nelson, L.A., Wallman, J.F. & Dowton, M. (2007). Using COI barcodes to identify forensically and medically important blowflies, Med. Vet. Entomol. 21:44–52.
Ngwama, J. C. (2014). Kidnapping in Nigeria: An Emerging Social Crime and the Implications for the Labour Market. International Journal of Humanities and Social Sciences. 4:133-145.
Oliveira, A.R., Farinha, A. Rebelo, M.T. & Dias, D. (2011). Forensic entomology: Molecular identification of blowfly species (Diptera: Calliphoridae) in Portugal, Forensic Science International: Genetics Supplement Series, 3 (1): e439-e440.
Oliveira-Costa, J. (2003). Entomologia forense; quando os insetos são os vestígios. Campinas: Millennium Editora.
Reibe, S.& Madea, B. (2010) how promptly do blowflies colonise fresh carcasses? A study comparing indoor with outdoor locations. Forensic sci. int. 195:52-57. [crossref][PubMed]
Rognes, K., & Paterson, H.E.H. (2005). Chrysomya chloropyga (Wiedemann, 1818) and Chrysomya putoria (Wiedemann, 1830) (Diptera, Calliphoridae) are two different species, African Entomol. (13) 49–70
Roslin, T., Somervuo, P., Pentinsaari, M., Hebert, P. D. N., Agda, J., Ahlroth, P., Anttonen, P., Aspi, J., Blagoev, G., Blanco, S., Chan, D., Clayhills, T., deWaard, J., deWaard, S., Elliot, T., Elo, R., Haapala, S., Helve, E., Ilmonen, J., . . .& Mutanen, M. (2021). A molecular‐based identification resource for the arthropods of Finland. Molecular Ecology Resources. 22(2)
Sharma, R. & Gaur, J.R. (2015). Various methods for the estimation of the post mortem interval from calliphoridae: A review. Egyptian Journal of Forensic Sciences,5(1):1-12.
Sharma, R., Kishore, A., Mukesh, M., Ahlawat, S., Maitra, A., Kumar, A. P. & Madhu Sudan Tantia M.S. (2015). Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers. BMC Genetics 16:73.
Singh, B., Kurahashi, H., & Wells, J. D. (2011). Molecular phylogeny of the blowfly genus Chrysomya. Medical and veterinary entomology, 25(2), 126–134.
Sontigun, N., Sukontason, K. L., Amendt, J., Zajac, B. K., Zehner, R., Sukontason, K., Chareonviriyaphap, T. & Wannasan, A. (2018). Molecular Analysis of Forensically Important Blowflies in Thailand. Insects, 9 (159)
Sperling, F. Anderson, G. & Hickey, D. A. (1994). DNA-based approach to the identification of insect species used for post-mortem interval estimation, J. Forensic Sci. 39 :418–427.
Szpila, K., Richet, R. & Pape, T. (2015). Third instar larvae of flesh flies (Diptera: Sarcophagidae) of forensic importance—critical review of characters and key for European species. Parasitology Research, 114:2279–2289.
Tamura K., Nei M., & Kumar S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101:11030-11035.
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., & Kumar S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731-2739.
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673–4680.
Tuccia, F., Giordani, G. & Vanin, S. (2016). A general review of the most common COI primers for Calliphoridae identification in forensic entomology. Forensic Science International: Genetics, 24: e9‑e11.
Vogel, H., Badapanda C., Knorr E., & Vilcinskas A. (2014). RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. Insect Mol. Biol. 23:98–112.
Wells, J. D., & Sperling, F. A. (2001). DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic science international, 120(1-2), 110–115.