EFFECTS OF VARIOUS LIGHT INTENSITIES ON PHYCOCYANIN COMPOSITION OF CYANOBACTERIUM LIMNOSPIRA FUSIFORMIS (VORONICHIN) NOWICKA-KRAWCZYK, MÜHLSTEINOVÁ & HAUER

Main Article Content

Haider kareem
Haider Alghanmi
https://orcid.org/0000-0002-6078-3145

Abstract

Phycocyanin denotes a photosynthetic pigment discovered in Rhodophyta and cyanobacteria, which has been used in medical, industrial, and agricultural applications. In general, phycocyanin production by cyanobacteria depends on many environmental conditions, mainly light during the cultivation period. The goal of this research was to see how various light intensities of 47, 52, as well as 60 µmol m-2 s-1, affected the Phycocyanin production of cyanobacterium Limnospira fusiformis cultured in Zarrouk medium with a maximum temperature of 28°C. The outcomes revealed that with mild light intensity (52 µmol m-2 s-1), increased phycocyanin production of 11.94 ng/mg took place. With regard to greater light intensity (60 µmol m-2 s-1), the lesser phycocyanin production of 0.57 ng/mg took place. These results give a good impression that moderate lighting increases phycocyanin production, but high light intensity inhibits it. The statistical analysis results also showed that there are significant differences between the light intensities used in the study at a level of p<0.05. Therefore, this study concluded that phycocyanin was affected by light intensity. Light regime optimization gives a good yield of this pigment. In this study, high phycocyanin production by cyanobacterium Limnospira fusiformis occurred in mild light intensity (52 µmol m-2 s-1).

Downloads

Download data is not yet available.

Article Details

How to Cite
kareem , H. ., & Alghanmi, H. (2023). EFFECTS OF VARIOUS LIGHT INTENSITIES ON PHYCOCYANIN COMPOSITION OF CYANOBACTERIUM LIMNOSPIRA FUSIFORMIS (VORONICHIN) NOWICKA-KRAWCZYK, MÜHLSTEINOVÁ & HAUER. Malaysian Journal of Science, 42(1), 1–6. https://doi.org/10.22452/mjs.vol42no1.1
Section
Original Articles

References

Alghanmi, H. A. (2020). Evaluating the effect of different doses of gamma radiation on carbohydrates, proteins, and lipids content of arthrospira fusiformis. EurAsian Journal of BioSciences, 14(1).

Atta, M., Idris, A., Bukhari, A., & Wahidin, S. (2013). Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresource technology, 148, 373-378.

Barsanti, L., & Gualtieri, P. (2014). Algae: anatomy, biochemistry, and biotechnology. CRC press.

Becker, E. W., & Venkataraman, L. V. (1984). Production and utilization of the blue-green alga Spirulina in India. Biomass, 4(2), 105-125. https://doi.org/https://doi.org/10.1016/0144-4565(84)90060-X

Berg, J. (2002). DNA replication, recombination and repairBerg JM, Tymoczko JL and Stryer L: Biochemistry. In: New York: WH Freeman & Co.

Blanken, W., Cuaresma, M., Wijffels, R. H., & Janssen, M. (2013). Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2(4), 333-340.

Boisen, S., & Eggum, B. O. (1991). Critical evaluation of in vitro methods for estimating digestibility in simple-stomach animals. Nutr Res Rev, 4(1), 141-162. https://doi.org/10.1079/nrr19910012

Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable sustainable energy reviews, 14(2), 557-577.

Colla, L. M., Furlong, E. B., & Costa, J. A. V. (2007). Antioxidant properties of Spirulina (Arthospira) platensis cultivated under different temperatures and nitrogen regimes. Brazilian archives of biology technology, 50(1), 161-167.

Colla, L. M., Muccillo-Baisch, A. L., & Costa, J. A. V. (2008). Spirulina platensis effects on the levels of total cholesterol, HDL and triacylglycerols in rabbits fed with a hypercholesterolemic diet. Brazilian archives of biology technology, 51(2), 405-411.

Eriksen, N. T. (2008). Production of phycocyanin--a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol, 80(1), 1-14. https://doi.org/10.1007/s00253-008-1542-y

Ferreira, A., & Gouveia, L. (2020). Chapter 28 - Microalgal biorefineries. In E. Jacob-Lopes, M. M. Maroneze, M. I. Queiroz, & L. Q. Zepka (Eds.), Handbook of Microalgae-Based Processes and Products (pp. 771-798). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-818536-0.00028-2

Grossman, A. R. (2003). A molecular understanding of complementary chromatic adaptation. Photosynth Res, 76(1-3), 207-215. https://doi.org/10.1023/a:1024907330878

Khandual, S., Sanchez, E. O. L., Andrews, H. E., & de la Rosa, J. D. P. (2021). Phycocyanin content and nutritional profile of Arthrospira platensis from Mexico: efficient extraction process and stability evaluation of phycocyanin. BMC Chemistry, 15(1), 24. https://doi.org/10.1186/s13065-021-00746-1

Kuddus, M., Singh, P., Thomas, G., & Al-Hazimi, A. (2013). Recent developments in production and biotechnological applications of C-phycocyanin. BioMed research international, 2013.

Lee, R. E. (2018). Phycology. Cambridge university press.

Ma, R., Lu, F., Bi, Y., & Hu, Z. (2015). Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnol Lett, 37(8), 1663-1669. https://doi.org/10.1007/s10529-015-1831-3

Moraes, C. C., Sala, L., Cerveira, G. P., & Kalil, S. J. (2011). C-phycocyanin extraction from Spirulina platensis wet biomass. Brazilian Journal of Chemical Engineering, 28(1), 45-49.

Norena-Caro, D. A., Malone, T. M., & Benton, M. G. (2021). Nitrogen Sources and Iron Availability Affect Pigment Biosynthesis and Nutrient Consumption in Anabaena sp. UTEX 2576. Microorganisms, 9(2), 431. https://doi.org/10.3390/microorganisms9020431

Nowicka-Krawczyk, P., Mühlsteinová, R., & Hauer, T. (2019). Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Scientific Reports, 9(1), 694. https://doi.org/10.1038/s41598-018-36831-0

Schipper, K., Fortunati, F., Oostlander, P. C., Al Muraikhi, M., Al Jabri, H. M. S. J., Wijffels, R. H., & Barbosa, M. J. (2020). Production of phycocyanin by Leptolyngbya sp. in desert environments. Algal Research, 47, 101875. https://doi.org/https://doi.org/10.1016/j.algal.2020.101875

Silva, L. A. (2008). Estudo do processo biotecnológico de produção, extração e recuperação do pigmento ficocianina da Spirulina platensis.

Szwarc, D., & Zieliński, M. (2018). Effect of Lighting on the Intensification of Phycocyanin Production in a Culture of Arthrospira platensis. Proceedings 2(20), 1305. https://www.mdpi.com/2504-3900/2/20/1305

Takano, H., Arai, T., Hirano, M., & Matsunaga, T. (1995). Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902. Appl Microbiol Biotechnol, 43(6), 1014-1018. https://doi.org/10.1007/BF00166918

Tripathi, R., Shalini, R., & Singh, R. K. (2021). Prophyletic origin of algae as potential repository of anticancer compounds. In Evolutionary Diversity as a Source for Anticancer Molecules (pp. 155-189). Elsevier.

Vonshak, A. (1997). Spirulina platensis arthrospira: physiology, cell-biology and biotechnology. CRC press.

Wicaksono, H., Satyantini, W., & Masithah, E. (2019). The spectrum of light and nutrients required to increase the production of phycocyanin Spirulina platensis. IOP Conference Series: Earth and Environmental Science,

Zavrel, T., Sinetova, M. A., & Červený, J. (2015). Measurement of Chlorophyll a and Carotenoids Concentration in Cyanobacteria. Bio-protocol, 5(9), e1467. https://doi.org/10.21769/BioProtoc.1467