Lignin and Cellulose Nanofibers from Bambusa vulgaris Schrad (Bamboo): An Extraction, Preparation and Characterization Study

Main Article Content

Tawakaltu AbdulRasheed-Adeleke
Evans Chidi Egwim
Stephen Shaibu Ochigbo
Adefowope Saheed Alabi
Christopher Chintua Enweremadu
Joshua Olusegun Okeniyi

Abstract

In this paper, lignin and cellulose nanofibers were extracted and prepared from Bambusa vulgaris schrad (B. vulgaris: bamboo) before being subjected to characterization investigations. These extractions and preparations of the lignin and cellulose nanofibers were carried out chemically using alkali combined with bleaching treatments together with acid hydrolysis and sonication. The cellulose nanofibers were then subjected to morphological and dimensional characterization of the Zetasizer, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) instruments. The functional groups investigation, using Fourier Transform infrared spectroscopy (FTIR), and thermal degradation via the Thermogravimetric analysis (TGA), of the bamboo lignin and of the cellulose nanofibers were also carried out. Results revealed that the percentage yields of the bamboo lignin and bamboo nanofiber were 21.91 wt% and 33.6 wt% respectively. The SEM and TEM investigations indicated the prepared nanofibers were rod-like in morphology, having sizes ranging from 20 to 100 nm. FTIR showed that the lignin extracted from bamboo typified G-S type lignin while the nanofibers are completely devoid of lignin. TGA revealed that the lignin was more thermally stable than the nanofiber under the test conditions. The obtained lignin and cellulose nanofibers showed promise for possible application as reinforcement agents in biodegradable nanocomposite film preparation.

Downloads

Download data is not yet available.

Article Details

How to Cite
AbdulRasheed-Adeleke, T., Egwim, E. C., Ochigbo, S. S., Adefowope Saheed Alabi, Christopher Chintua Enweremadu, & Okeniyi, J. O. (2025). Lignin and Cellulose Nanofibers from Bambusa vulgaris Schrad (Bamboo): An Extraction, Preparation and Characterization Study. Malaysian Journal of Science, 44(1), 1–8. https://doi.org/10.22452/mjs.vol44no1.1
Section
Original Articles

References

Atanda, J. (2015). Environmental impacts of bamboo as a substitute constructional material in Nigeria. Case Studies in Construction Materials 3:33–39.
Alemdar, A., Sain, M. (2008). Isolation and characterization of nanofibers from agricultural residues, Wheat straw and soy hulls. Bioresource Technology, 99:1664–1671.
Azizi-Samir, M.A.S., Alloin, F., Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6:612–626.
Bao, L., Chen, Y., Zhou, W., Wu, Y., Huang, Y. (2011). Bamboo fibers at poly(ethylene glycol) reinforced poly (butylenes succinate) biocomposites. Journal of Applied Polymer Science, 122:2456–2466.
Beloin C., Roux A., Ghigo J.-M. (2008). “Escherichia coli Biofilms.” In: Romeo, T. (ed.) Bacterial biofilms. Current Topics in Microbiology and Immunology (Volume 322). Springer-Verlag Berlin Heidelberg, 249–289.
Brethauer, S., Shahab, R.L., Studer, M.H. (2020). Impacts of biofilms on the conversion of cellulose. Applied Microbiology and Biotechnology, 104:5201–5212.
Börcsök, Z., Pásztory, Z. (2020). The role of lignin in wood working processes using elevated temperatures: an abbreviated literature survey. European Journal of Wood and Wood Products, doi:10.1007/s00107-020-01637-3.
Chabannes, M., Ruel, K., Yoshinaga, A., Chabbert, B., Jauneau, A., Joseleau, J.P., Boudet, A.M. (2001). In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant Journal, 28(3):271–282
Chakraborty, A., Sain, M., Kortschot, M. (2006). Reinforcing potential of wood pulp-derived microfibers in a PVA matrix. Holzforschung, 60:53–8.
Coates, J. (2000). “Interpretation of infrared spectra, a practical approach.” In: Meyers, R.A. (Ed.), Encyclopedia of Analytical Chemistry, 10815-10837.
Dinh Vu, N., Thi Tran, H., Bui, N.D., Duc Vu, C., Viet Nguyen, H. (2017). Lignin and cellulose extraction from Vietnam’s rice straw using ultrasound-assisted alkaline treatment method. International Journal of Polymer Science, 2017:1063695.
Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C. (2008). The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 9 (1):57–65.
Faix, O. (1991). Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung, 45:21–27.
Ghatak, H.R. (2008). Spectroscopic comparison of lignin separated by electrolysis and acid precipitation of wheat straw soda black liquor. Industrial Crops and Products, 28(2):206–212.
Gibson, L.J. (2012). The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface, 9(76):2749–2766.
Gopakumar, D.A., Manna, S., Pasquini, D., Thomas, S. and Grohens, Y. (2018). Nanocellulose: extraction and application as a sustainable material for wastewater purification. In: Hussain, C.M. and Mishra, A.K. (Eds.) New Polymer Nanocomposites for Environmental Remediation, Elsevier Inc., 469–486.
Harman-Ware, A.E., Happs, R.M., Davison, B.H. and Davis, M.F. (2017). The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers. Biotechnology for Biofuels, 10(1):1–11.
Ibrahim, M.N., Mohamad, A.H., Yusop M.R.M. (2006). The effects of lignin purification on the performance of iron complex drilling mud thinner. Jurnal Teknologi. 44:83–94.
Jawerth, M.E., Brett, C.J., Terrier, C., Larsson, P.T., Lawoko, M., Roth, S.V., Lundmark, S., Johansson, M. (2020). Mechanical and morphological properties of lignin-based thermosets. ACS Applied Polymer Materials, 2(2):668–676.
John, M.J., Anandjiwala, R.D., Pothan, L.A., Thomas, S. (2007). Cellulosic fiber reinforced green composites. Composite Interface, 14 (7–9):733–751.
Kampeerapappun, P., Aht-ong, D., Pentrakoon, D. and Srikulkit, K., 2007. Preparation of cassava starch/montmorillonite composite film. Carbohydrate Polymers, 67(2):155–163.
Kaushik, A., Singh, M., Verma, G. (2010). Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers, 82:337–345.
Krishnan, V.N., Ramesh, A. (2013). Synthesis and characterization of cellulose nanofibers from coconut coir fibers. IOSR Journal of Applied Chemistry (IOSR-JAC), 6(3):18–23.
Labeeuw, L., Martone, P.T., Boucher, Y., Case, R.J. (2015). Ancient origin of the biosynthesis of lignin precursors. Biology Direct, 10(1):1–21.
Lebo, S.E.J., Gargulak, J.D. and McNally, T.J. (2015). Lignin. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. doi:10.1002/0471238961.12090714120914.a01.pub3
LeVan, S.L. (1989). Thermal degradation. In: Scniewind A.P. (Ed.), Concise Encyclopedia of Wood and Wood-based Materials. Pergamon Press, New York, 271–273.
Li, J. (2011). Isolation of Lignin from Wood. Saimaa University of Applied Sciences, Imatra Unit of Technology, Degree Programme in Paper Technology. Bachelor’s Thesis, 2011.
Liu, D., Zhong, T., Chang, P.R., Li, K., Wu, Q. (2010). Starch composites reinforced by bamboo cellulosic crystals. Biosource Technology, 101:2529–2536.

Lu, Y., Sun, Q., She, X., Xia, Y., Liu, Y., Li, J., Yang, D. (2013). Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication Carbohydrate Polymer, 98(2):1497–1504.
Martone, P.T., Estevez, J.M., Lu, F., Ruel, K., Denny, M.W., Somerville, C., Ralph, J. (2009). Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Current biology, CB 19(2):169–75.
Menon, M.P., Selvakumar, R., Ramakrishna, S. (2017). Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Advances, 7(68):42750¬–42773.
Ochigbo, S.S., Luyt, A.S., Mofokeng, J.P., Antic, Z., Dramicanin, M.D., Djokovic, V. (2012). Dynamic mechanical and thermal properties of the composites of thermoplastic starch and lanthanum hydroxide nanoparticles. Journal of Applied Polymer Science, doi:10.1002/APP.37859.
Okeniyi, J.O., Akinlabi, E.T., Akinlabi, S.A. and Okeniyi, E.T. (2019). Biochemical characterization data from Fourier transform infra-red spectroscopy analyses of Rhizophora mangle L. bark-extract. Chemical Data Collections, 19:100177.
Okeniyi, J.O., Popoola, A.P.I., Ojewumi, M.E., Okeniyi, E.T. and Ikotun, J.O. (2018). Tectona grandis capped silver-nanoparticle material effects on microbial strains inducing microbiologically influenced corrosion. International Journal of Chemical Engineering, 2018:7161537.
Okeniyi, J.O., John, G.S., Owoeye, T.F., Okeniyi, E.T., Akinlabu, D.K., Taiwo, O.S., Awotoye, O.A., Ige, O.J., Obafemi, Y.D. (2017a). Effects of Dialium guineense based zinc nanoparticle material on the inhibition of microbes inducing microbiologically influenced corrosion. In: Meyers, M.A., Benavides, H.A.C., Brühl, S.P., Colorado, H.A., Dalgaard, E., Elias, C.N., Figueiredo, R.B., Garcia-Rincon, O., Kawasaki, M., Langdon, T.G., Mangalaraja, R.V., Marroquin, M.C.G., da Cunha Rocha, A., Schoenung, J.M., Costa e Silva, A., Wells, M., Yang, W. Proceedings of the 3rd Pan American Materials Congress, Springer, Cham, 21–31.
Okeniyi, J.O., Omotosho, O.A., Inyang, M.A., Okeniyi, E.T., Nwaokorie, I.T., Adidi, E.A., Owoeye, T.F., Nwakudu, K.C., Akinlabu, D.K., Gabriel, O.O., Taiwo, O.S. (2017b). Investigating inhibition of microbes inducing microbiologically-influenced-corrosion by Tectona grandis based Fe-nanoparticle material. In: AIP Conference Proceedings, AIP Publishing LLC, 1814(1):020034.
Okeniyi, J.O. and Popoola, A.P.I. (2017). Understanding eco-friendly anticorrosion prospect on steel-reinforcement in NaCl-immersed concrete from biochemical characterization of Irvingia gabonensis leaf. Contributed Papers from Materials Science and Technology 2017 (MS&T17), 1070–1077.
Okeniyi, J.O., Okeniyi, E.T., Ogunlana, O.O., Owoeye, T.F. and Ogunlana, O.E. (2016). Investigating biochemical constituents of Cymbopogon citratus leaf: Prospects on total corrosion of concrete steel-reinforcement in acidic-sulphate medium. In: TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, Springer, Cham, 341–351.
Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, T., Ikkala, O. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6):1934–1941.
Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A. and Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1):32–43.
Radotić K., Mićić M. (2016). “Methods for extraction and purification of lignin and cellulose from plant tissues.” In: Mićić M. (eds) Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer Protocols Handbooks. Humana Press, New York, NY. doi:10.1007/978-1-4939-3185-9_26
Rahim, W.R.W.A., Idrus, R.M. (2018). Importance and uses of forest product bamboo and rattan: their value to socioeconomics of local communities. International Journal of Academic Research in Business and Social Sciences, 8(12):1484–1497.
Saito, T., Hirota, M., Tamura, N., Kimura, S., Fukuzumi, H., Heux, L., Isogai, A. (2009). Individualization of nano-sized cellulose fibrils by direct surface carboxylation using tempo catalyst under neutral conditions. Biomacromolecules, 10(7):1992–1996.
Salmén, L., Stevanic, J.S. and Olsson, A.M. (2016). Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA). Holzforschung, 70(12):1155–1163.
Saniwan, S., Lalita, V. and Chularat, K. (2012). Starch/cellulose biocomposites prepared by high-shear homogenization/compression molding. Journal of Materials Science and Engineering B, 2(4):213–222.
Shahi, N., Min, B., Sapkota, B., Rangari, V.K. (2020). Eco-friendly cellulose nanofiber extraction from sugarcane bagasse and film fabrication. Sustainability, 12(15):6015.
Shi, Z.J., Xiao, L.P., Xu, F., Sun, R.C. (2012). Physicochemical characterization of lignin fractions sequentially isolated from bamboo (Dendrocalamus brandisii) with hot water and alkaline ethanol solution. Journal of Applied Polymer Science, 125(4):3290¬–3301.
Sumin, K., Lingping, X., Lingyan, M., Xueming, Z., Runcang, S. (2012). Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. International Journal of Molecular Sciences, 13:15209–15226.
Vazquez, A., Foresti, M.L., Cerrutti, P., Galvagno, M. (2013). Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. Journal of Polymers and the Environment, 21(2):545–554.
Visakh, P.M., Sabu, T. Kristiina O., Aji, P.M. (2012a). Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical/thermal properties. Composites, Part A, 43:735–741.
Visakh, P.M., Sabu, T., Kristiina, O., Aji, P.M. (2012b). Effect of cellulose nanofibers isolated from bamboo pulp residue on vulcanized natural rubber. Bioresources, 7(2):2156–2168.
Xiao, S., Gao, R., Lu, Y., Li, J., Sun, Q. (2015). Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydrate Polymers, 119:202–209.
Yong, Z., Xiao-Bin, L., Chang, G., Wei-Jun, L., Ju-Ming, Y. (2012). Preparation and characterization of nano crystalline cellulose from bamboo fibers by controlled cellulase hydrolysis. Journal of Fiber Bioengineering & Informatics, 5(3):263–271.
Zakikhani, P. Zahari,R. Sultan, M.T.H., Majid, D.L. (2014). Bamboo fibre extraction and its reinforced polymer composite material. International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering, 8(4):284–287.

Zhang, J., Elder, T.J., Pu, Y., Ragauskas, A.J., (2007). Facile synthesis of spherical cellulose nanoparticles. Carbohydrate Polymers, 69(3):607–611.