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AN UPDATED CRYPTANALYSIS ON THE BFHP-DLP SIGNING SCHEME 

Amir Hamzah Abd Ghafar1a,b*, Muhammad Rezal Kamel Ariffin2a,b, Muhammad Asyraf Asbullah3b,c, Idham Arif Alias4a 
 

 

Abstract: The concept of public-key cryptography introduced the notion of a digital signature scheme. In the era of online and digital 

communications, a signature scheme that works perfectly to achieve the goals of cryptography- confidentiality, authentication, data 

integrity, and non-repudiation, is urgently needed. However, every cryptosystem, including a digital signature scheme requires a well-

defined difficult mathematical problem as its fundamental security strength, as demonstrated by the Diffie-Hellman key exchange with 

its discrete logarithm problem (DLP). Another problem called BFHP used by the 𝐴𝐴𝛽-encryption scheme, has also withstood any 

destructive cryptanalysis since the scheme was introduced in 2013. Later, a digital signature scheme was introduced that combines both 

BFHP and DLP as difficult mathematical problems. Mathematical cryptanalysis was also performed against this scheme to test its security 

strength. This paper presents new cryptanalysis of the signing scheme. While the previous cryptanalysis focused only on BFHP, the 

obtained new results showed some improvement by scrutinizing the other difficult mathematical problem, DLP. In addition, several 

potential attacks on the future implementation by introducing side-channel and man-in-the-middle attacks against the scheme also will 

be discussed in this work. The countermeasures for each attack to enable the best-practice implementation of the scheme are also 

presented. 

 

Keywords: digital signing scheme, discrete logarithm problem, number field sieve, fault analysis attack, man-in-the-middle attack 
 

 
1. Introduction 
 

Most digital applications of today’s use required a digital 

signature scheme embedded in their core functions. The 

scheme serves the cryptographic goals of verifying the 

authenticity, integrity, and non-repudiation of a digital 

document transmitted over an insecure Internet channel. 

Traditional signing schemes were already introduced by 

ElGamal (1985), Rivest et al.  (1978), and Schnorr (1991). 

Today, various protocols of signing schemes have been 

derived from these schemes and refined for niche purposes, 

including threshold signature (Gennaro et al., 2018; Ergezer 

et al., 2020), group signature (Islamidina et al., 2019; Nick et 

al., 2020), and blind signature (Alam et al., 2016; Fuchsbauer 

et al., 2020;) schemes. Some of the variants have become the 

backbone of the latest digital technologies, including 

blockchain systems (Stathakopoulou & Cachin, 2017; Guo & 

Lan, 2020). In addition, a standard digital signature scheme 

that can be used by public users has been introduced, 

namely, Public-Key Cryptography Standard (PKCS) #1 and 

Elliptic Curve Digital Signature Algorithm (ECDSA), which 

have been documented by the Internet Engineering Task 

Force (IETF) (Moriarty et al., 2016; Pornin, 2013).  

All of the mentioned schemes use either the Integer 

Factorization Problem (IFP) or the Discrete Logarithm 

Problem (DLP), which are considered by many to be one-way 

functions in the mathematical domain (Hoffstein et al., 

2008). These functions ensure the previously mentioned 

cryptographic goals are achieved by satisfying the properties 

of a mathematical one-way function. The functions are also 

resistant to all feasible algorithms that can work with current 

computing power. The best algorithm for solving IFP is the 

quadratic sieve algorithm described by Pomerance (1984), 

while several algorithms, namely the index computation, 

Pollard's rho, and number field sieve algorithms explained by 

Paar and Pelzl (2009), are among the best-known algorithms 

for solving it. However, all of these algorithms run in 

subexponential time at best, which prevents any active 

attack in real cryptographic implementations.  
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The approach of combining two difficult problems to 

increase the security of a cryptosystem is not new. Smith and 

Lennon (1993) introduced the LUC cryptosystem based on 

DLP and IFP. However, the attacks conducted against this 

cryptosystem (Jin et al., 2013; Wong et al., 2015; Sarbini et 

al., 2018;) have shown that it should be carefully examined 

before using any implementation. In this paper, the scheme 

is discussed by combining the DLP with another difficult 

mathematical problem called the Bivariate Function Hard 

Problem (BFHP). The problem was introduced by Ariffin et al. 

(2013) and has been used previously to develop a new 

encryption scheme called the 𝑨𝑨𝜷-algorithm. The scheme 

relies solely on BFHP as its security strength and is suitable to 

be applied on an embedded system device due to its high 

encryption speed compared to conventional encryption 

schemes (Adnan et al., 2016). Its decryption algorithm has 

also withstood several side-channel attacks, which can be 

remedied by minimal additional operation (Abd Ghafar & 

Ariffin, 2014; Abd Ghafar & Ariffin, 2016). 

 

1.1. Contribution of This Paper 

 

This paper presents a new signing scheme that combines 

BFHP and DLP as a key security strength. The scheme, named 

BFHP-DLP signing scheme, was introduced by Abd Ghafar & 

Ariffin (2019) and is comparable in its computational 

operations to existing signing schemes such as RSA, ElGamal, 

and Schnorr. In contrast to the original paper, the scheme is 

presented based on its modules. This form of presentation is 

better suited to control access to the modules given to the 

intended entity. Another important contribution of this work 

is that three new improved attacks on the BFHP-DLP signing 

method being performed. The improved cryptanalysis is 

based on the recent results on solving DLP and techniques of 

side-channel attack and man-in-the-middle attack, which can 

be used to retrieve the values of the private keys of the 

scheme.  

The first attack refers to the recent attempt by Boudot et 

al. (2020), who successfully solved DLP using the Number 

Field Sieve algorithm with a 795-bits prime. Hence, the 

obtained result proved how this recent result can affect the 

size criteria used in the key generation algorithm of the 

BFHP-DLP scheme. The second attack assumes that an 

adversary can perform a side-channel attack on the device 

that carries out the signing scheme. In the third attack, the 

authors showed that the adversary can successfully break 

the scheme using a man-in-the-middle attack method. 

 

1.2. Outline of the Paper 

 

The outline of methods used in this paper is as follows; 

number field sieve algorithm, side-channel attack, and man-

in-the-middle attack are discussed in Section 2. Then, Section 

3 describes the reintroduce BFHP-DLP signing scheme. The 

three attacks, which are the primary basis of this paper, will 

be presented in Section 4. Finally, the conclusion will be 

discussed in Section 5. 

 

2. Preliminaries 
 

This section describes the methods used in improved 

cryptanalysis. Although all methods are little known in the 

literature, they are widely used in attacks on public-key 

cryptosystems. 

  

2.1 Number Field Sieve (NFS) 

 

Before describing the number field sieve method, the 

problem of the discrete logarithm that the method attempts 

to solve is first defined. The problem is also used in the BFHP-

DLP signing scheme. 

Definition 1 (Discrete logarithm problem). Let 𝒑 be a 

prime. Suppose 𝔽𝒑 is a prime-order finite field. Given 𝒈, 𝒉 ∈

𝔽𝒑
∗ , discrete logarithm problem is a problem to find 𝒙 such 

that 𝒈𝒙 ≡ 𝒉 (mod 𝒑). 

The goal of the NFS in the finite field of DLP is to compute 

a non-trivial homomorphism from 𝑮 to ℤ 𝓵ℤ⁄  such that 𝑮 is a 

subgroup of prime order 𝓵 within 𝔽𝒑
∗ . The strategy to achieve 

this goal is to find two irreducible polynomials 𝒇𝟎 of degree 

𝒖 and 𝒇𝟏 of degree 𝒗 in ℤ𝒙. These polynomials should have a 

common root 𝝁 modulo 𝒑. Let ℚ(𝒊) be the number field 

defined by 𝒇 where 𝒊 ∈ ℂ is a root of 𝒇𝟏 such that 𝒇𝟏 is an 

irreducible polynomial, then the most challenging task in NFS 

is to find a pair of integers (𝜶, 𝜷) such that  

 

𝜸 = 𝜶 − 𝜷𝝁 and 𝜹 = 𝜶 − 𝜷𝒊 

 

are both decomposable into small factors, i.e. smooth 

numbers. Many papers in the literature are devoted to 

finding the relation between 𝜶 and 𝜷, since this step takes 

up most of the computations (computational power and 

computational storage. In this case, the result from this 

method is applied to fit into our key generation algorithm; as 

described in detail by Boudot et al. (2019) 

  

2.2 Side-channel attack 

 

This attack focuses on the implementation of 

cryptosystems in electronic devices. It relies on observable 

outputs such as computing time, power consumption, 

acoustic form and many more during cryptographic 

processes. The adversary can collect these outputs because 

the computation takes place in a 'black box' system, i.e. the 

adversary can only examine the functionality of the devices 

but has no access to the private functioning. The attack 

introduced by Kocher (1996) typically examines the private 

computations of the signing scheme. In this paper, the 

signing algorithm of the BFHP-DLP scheme is specifically 

become the main focus.  

https://doi.org/10.22452/mjs.sp2022no1.1
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2.2.1 Fault Analysis 

 

By the definition of a side-channel attack, an attacker 

cannot determine the internal states of the attacked 

cryptographic devices. However, by introducing unexpected 

environmental conditions that can lead to data corruption 

into a specific part of the processor executed by the devices, 

the attacker can cause errors in the targeted cryptographic 

computations. By neglecting the error, the attacker can then 

isolate the instructions executed by the devices and 

eventually determine the internal workings of computations.  

In a seminal work by Bao et al. (1997), 𝒑 is the public key 

of the ElGamal signature scheme and M is the message to be 

signed. This showed that an attacker can obtain the actual 

signature by flipping one bit of the private signing key, 𝒅 at 

the 𝒊-th bit position, thus forming an erroneous 𝒅′, then  

 

𝑺 ≡ 𝑴𝒅(mod 𝒑) 

 

and the faulty signature,  

 

𝑺′ ≡ 𝑴𝒅′
(mod 𝒑). 

 

Both signatures then can be used to determine the bit of 𝒅 

at 𝒕𝒉𝒆 𝒊-th position by computing the  function 

 

𝑺′

𝑺
 ≡  𝑴𝒅′−𝒅  ≡  {

𝑴𝟐𝒊 (mod 𝒑) if the 𝒊 − th bit of 𝒅 = 𝟎 
𝟏

𝑴𝟐𝒊 
(mod 𝒑) if the 𝒊 − th bit of 𝒅 = 𝟏

. 

 

To extend the attack and determine the entire bits of the 

private key, each bit with 𝒊 = 𝟏, 𝟐, 𝟑, … , 𝒏 should be 

examined and a subexponential algorithm is needed. The 

attack shows the significance of thorough cryptanalysis to 

ensure that the signature cannot be compromised to obtain 

information about the private keys.   

 

2.3 Man-in-the-middle attack 

 

If the communication between two units is secretly 

intercepted by an adversary, the immediate consequence 

depends on whether the adversary is actively involved in the 

communication. For example, if the adversary surreptitiously 

forwards and modifies the communication, there is a man-

in-the-middle attack on the communication. 

A suitable authentication mechanism is required to 

prevent this attack. The standard mechanism currently used 

is the exchange of digital certificates issued and verified by a 

trusted Certificate Authority (CA). However, this CA can also 

be a target of a man-in-the-middle attack. Therefore, CA 

must be subjected to proper evaluation and security 

verification at regular intervals. 

 

In this paper, a man-in-the-middle attack is constructed 

against the BFHP-DLP signature procedure. The existence of 

such an attack shows that it is necessary to first develop a 

suitable cryptographic protocol before this system can be 

used in an application. 

 

3. BFHP-DLP Signing Scheme 
 

In this study, our scheme is rewritten and compared to 

the original paper by (Abd Ghafar & Ariffin, 2019) in our to 

separate our schemes into their purported modules. This 

form is more suitable for cryptanalysis of our scheme, 

especially when the modules may have different access 

controls even though they are included in the same 

algorithm. It also reflects the actual use of a cryptographic 

scheme in a real scenario.  

The initialisation and key generation algorithms of the 

scheme, as shown in Figure 1. 

 

𝓘: Initialization algorithm → (𝒑, 𝒈) 

Select 𝒑 randomly from ℤ𝟐𝒎    

           where 𝒎 is a large integer 

Select 𝒈 from ℤ𝒑
∗  where 𝒈 is a primitive root of group ℤ𝒑

∗  

 

𝓚: Key Generation algorithm → (𝒂, 𝒃) and (𝑨, 𝑩) 

Private key 

           Given 𝒏 > 𝒎. 

           select 𝒂 randomly from ℤ𝟐𝒏  

           select 𝒃 randomly from ℤ𝟐𝒏  

Public key 

           compute 𝑨 ≡ 𝒈𝒂(mod 𝒑) 

           compute 𝑩 ≡ 𝒈𝒃(mod 𝒑)            

 

Figure 1. Initialization and key generation algorithms of 

BFHP-DLP signing scheme 

 

As in Figure 1, the algorithms are typically computed by 

isolated devices controlled by a Trusted Third Party (TTP). An 

example of such a TTP practice is CA (as referred to in Section 

2.3), which is validated by government agencies. This 

approach ensures that only the authorised body can monitor 

the process. After the keys are generated, the private keys 

are securely stored in a tampered-resistant device, such as 

chips on a smartcard or a secure token carried by the 

authenticated owners.   

Next, the algorithms for signing and verification of the 

scheme are shown in Figure 2. 

In the signature algorithm, a hash function 𝑯 creates a 

digital fingerprint of 𝑴‖𝒓, which is the concatenation of the 

original message, 𝑴 with the private parameter, 𝒓. The 

standard hash function used today is SHA-256 and its 

variants. 
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𝓢: Signature algorithm of 𝑴 → (𝑴, 𝝈, 𝒆) 

Public ephemeral key 

           select 𝒙 randomly from ℤ𝟐𝒎  

           select 𝒚 randomly from ℤ𝟐𝒎  

Private session key 

           compute 𝒄 = 𝒂𝒙 + 𝒃𝒚 

           select 𝒌 randomly from ℤ𝟐𝒏  such that 

           𝒄 − 𝒌 > 𝟐𝒎 and 𝒏 > 𝒎. 

Private computation of signing 𝑴 

           compute 𝒔 = 𝒄 − 𝒌 

           compute 𝒓 ≡ 𝒈𝒌(mod 𝒑) 

           𝒆 = 𝑯(𝑴‖𝒓) where 𝑯 is a hash function 

Output public signature 𝝈 = (𝒙, 𝒚, 𝒔, 𝒆)  

 

𝓥: Verification algorithm of (𝑴, 𝝈)  

Verification key 

          compute 𝒓′ ≡ 𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−𝒔(mod 𝒑) 

Check whether 

          𝑯(𝑴‖𝒓′) = 𝒆 → Yes/No 

 

Figure 2. Signing and verification algorithms of BFHP-DLP 

signing scheme 

 

Proof of Correctness. It is easy to see that 

 

𝑨𝒙𝑩𝒚 ≡ 𝒈𝒂𝒙𝒈𝒃𝒚 ≡ 𝒈𝒂𝒙+𝒃𝒚 ≡ 𝒈𝒄(mod 𝒑). (𝟏𝟒) 

 

If the correct 𝒄 is obtained, 𝒓′ will produce 𝑯(𝑴‖𝒓′) = 𝒆. 

 

4. The Updated Cryptanalysis 
 

This section presents the updated cryptanalysis of BFHP-

DLP discovered based on the new techniques described in 

Section 2. The cryptanalysis can be categorized into three 

different attacks. The first attack focuses solely on solving 

DLP, while the second and third attacks are based on the 

assumption of the complexity of the scheme’s key 

generation algorithm is reduced. 

 

4.1 First Attack: Number Field Sieve  

 

Boudot et al. (2019) showed that a DLP over a 795-bit 

prime field can be computed in 18-days using the latest 

computational technologies, well-chosen parameters and 

suitable algorithmic variants. In this attack, the assumption 

is made that their result affects our signing scheme, 

especially the parameters selection criterion in algorithms 

𝓘, 𝓚 and 𝓢. 

In the BFHP-DLP signing scheme, there are three 

instances of DLP, namely 𝑨 ≡ 𝒈𝒂(mod 𝒑) and 𝑩 ≡

𝒈𝒃(mod 𝒑) of algorithm 𝓚 and 𝒓 ≡ 𝒈𝒌(mod 𝒑) of algorithm 

𝓢. Although 𝒂, 𝒃 > 𝒌, since 𝒂, 𝒃 ∈ ℤ𝟐𝒏  and 𝒌 ∈ ℤ𝟐𝒎, where 

𝒏 > 𝒎, but all computations of DLP take place in an 𝒎-bit 

prime field 𝒑, so that 𝒑 ∈ ℤ𝟐𝒎 . From this observation with 

the results of Boudot et al. (2019), it can be noticed that 

those private keys 𝒂, 𝒃 can be retrieved when 𝒎 ≤ 𝟕𝟗𝟓. So, 

a larger 𝒎 is required to ensure that the scheme can exploit 

the security strength of DLP. 

Since the original work by (Abd Ghafar & Ariffin, 2019) 

did not mention the appropriate size of 𝒎 and 𝒏, so it can be 

proposed that 𝒎 is at least 𝟐𝟎𝟒𝟖 and 𝒏 = 𝟐𝒎 = 𝟒𝟎𝟗𝟔. This 

recommendation follows the NIST standard for 

cryptographic keys using DLP (Barker & Dang, 2015). 

 

4.2 Second Attack: Fault Analysis 

 

Every implementation of a cryptosystem attempts to 

reduce the complexity of the cryptographic algorithms. 

Reduced complexity leads to reduce computational time, 

power consumption, or memory capacity, making it 

attractive to be implemented in a smaller device. Based on 

this motivation, it assumed that the possibility to fix the 

value of the parameter 𝒌  is an attractive solution. The fixed 

values result in a fixed 𝒓, since 𝒓 ≡ 𝒈𝒌(mod 𝒑). 

Furthermore, random selection can be omitted so less power 

and memory can be fixed for 𝒓. However, it can be seen that 

this approach can be advantageous for the adversary to 

determine the bits of 𝒌 using the method described in 

Section 2.2.1.  

Definition 2 (Fault analysis adversary, 𝓐𝟏). 𝓐𝟏 is defined 

as an adversary that is able to inject a faulty environment 

into the Algorithm 𝓢 that can invert a bit of 𝒌 at 𝒊th position 

(from the right), 𝒌𝒊 to its complement bit, 𝒌𝒊
′. 

 

Example 1. Let 𝒌 = 𝟑𝟕𝟖𝟕 with bits 111011001011. Given 𝒊 =

𝟖, then 𝑨𝟏can flip 𝒌𝟓 = 𝟏 to 𝒌𝟓
′ = 𝟎, which produces 𝒌′ =

𝟑𝟔𝟓𝟗 with bits 111001001011.Noted that |𝒌 − 𝒌′| =

|𝟑𝟕𝟖𝟕 − 𝟑𝟔𝟓𝟗| = 𝟏𝟐𝟖 = 𝟐𝟕. 

 

The attack is stated in the following theorem. 

 

Proposition 1. Let 𝒌 be the private session key generated in 

algorithm 𝓢. Let 𝓐𝟏 be defined in Definition 2. If 𝒌 is used 

more than 𝒏 − 𝟏 times, then the entire bits of 𝒌 can be 

known. 

 

Proof. Assume that 𝓐𝟏 can change 𝒌𝒊 in 𝒌 is to its 

complement 𝒌𝒊
′ which produces 𝒌′ during the signing process 

in Algorithm 𝓢 as defined in Definition 2. Since the value of 𝒌 

differs from 𝒌′ at 𝒊-th bit position, then |𝒌 − 𝒌′| = 𝟐𝒊−𝟏 or 

 

𝒌 =  {𝒌′ − 𝟐𝒊−𝟏 if the 𝒊 − th bit of 𝒌 = 𝟎 
𝒌′ + 𝟐𝒊−𝟏 if the 𝒊 − th bit of 𝒌 = 𝟏

 

 

Observe that 

𝒔 =  {
𝒄 − (𝒌′ − 𝟐𝒊−𝟏) if the 𝒊 − th bit of 𝒌 = 𝟎 

𝒄 − (𝒌′ + 𝟐𝒊−𝟏) if the 𝒊 − th bit of 𝒌 = 𝟏
. (𝟏) 

 

https://doi.org/10.22452/mjs.sp2022no1.1


 

5 
 

Special Issue Malaysian Journal of Science 

DOI: https://doi.org/10.22452/mjs.sp2022no1.1  

Malaysian Journal of Science 41 (Special Issue 1): 1-8 (September 2022) 

Algorithm 𝓢 computed that  

�̃� ≡ 𝒈𝒌′
(mod 𝒑) (𝟐) 

 

and output  

𝒆′ = 𝑯(𝑴‖�̃�) 

 

to be included in the signature 𝝈. Let 

 

�̃�𝟏 = 𝒔 − 𝟐𝒊−𝟏

�̃�𝟐 = 𝒔 − 𝟐𝒊−𝟏
(𝟑) 

 

then 𝓐𝟏 can obtain the potential candidates for �̃� based on 

(𝟏), (𝟐), and (𝟑) by computing 

 

 𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−�̃�𝟏 ≡ 𝒈𝒂𝒙+𝒃𝒚−(𝒔−𝟐𝒊−𝟏)

≡ 𝒈𝒂𝒙+𝒃𝒚−(𝒄−(𝒌′−𝟐𝒊−𝟏)−𝟐𝒊−𝟏)

≡ 𝒈𝒌′
≡ 𝒓�̃�(mod 𝒑) (𝟒)

 

or  

 

 𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−�̃�𝟐 ≡ 𝒈𝒂𝒙+𝒃𝒚−(𝒔+𝟐𝒊−𝟏)

≡ 𝒈𝒂𝒙+𝒃𝒚−(𝒄−(𝒌′+𝟐𝒊−𝟏)+𝟐𝒊−𝟏) ≡ 𝒈𝒌′
≡ 𝒓�̃�(mod 𝒑) (𝟓)

 

 

if the 𝒊 − th bit of  𝒌 = 𝟏. Noted that both (𝟒) and (𝟓) 

should be executed by 𝓐𝟏 since, at this point, 𝓐𝟏 still does 

not know if the 𝒊 − th bit of 𝒌 is 0 or 1. By using the outputs 

from (𝟒) and (𝟓), now 𝓐𝟏 can determine the original bits of 

𝒌𝒊 by checking whether   

 

𝒆′ =  {
𝑯(𝑴‖𝒓𝟏  ̃)  if the 𝒊 − th bit of 𝒌 = 𝟎 

𝑯(𝑴‖𝒓𝟐  ̃) if the 𝒊 − th bit of 𝒌 = 𝟏
 

 

It can be shown how 𝓐𝟏 can determine one bit of 𝒌 at 

position 𝒊. If 𝓐𝟏 repeats the same process for 𝒏 − 𝟏 times, 

then 𝓐𝟏 has the total bits of 𝒌 since 𝒌 ∈ ℤ𝟐𝒏  or has 𝒏-bit size. 

This terminates the proof.    

            ∎ 

 

Theorem 1. Let (𝒂, 𝒃) be the private keys generated from 

algorithm 𝓚. Suppose (𝒙, 𝒚) and 𝒌 are randomized values 

from algorithm 𝓢 and 𝒔 = 𝒄 − 𝒌 is one of the signature 

parameters from 𝝈 defined in algorithm 𝓢. If full bits of 𝒌 are 

retrieved from Proposition 1, then (𝒂, 𝒃) can be known. 

  

Proof. By knowing the entire bits of 𝒌, an adversary can 

compute 𝒄 = 𝒔 + 𝒌 since 𝒔 is a public parameter obtained 

from 𝝈. By knowing 𝒄, the adversary can retrieve (𝒂, 𝒃) 

values using the Extended Euclidean algorithm since 𝒂𝒙 +

𝒃𝒚 = 𝒄 and values of (𝒙, 𝒚) are known from 𝝈. This 

terminates the proof.    

                       ∎ 

 

4.2.1 Countermeasures of the Second Attack 

 

The attacks presented in Proposition 1 and Theorem 1 

proved that it is possible for an adversary satisfying 

Definition 2 to retrieve the private keys of the BFHP-DLP 

signing scheme. Therefore, the apparent approach to avoid 

the attack is to never set 𝒌 to a static value. Although this 

approach may be counterproductive to the implementation, 

exposing arbitrary bits of 𝒌 can lead to a specified attack 

called a partial key exposure attack. 

 

4.3 Third Attack: Man-in-the-Middle  

 

Definition 3 (Active adversary, 𝓐𝟐). Let 𝝈 = (𝒙, 𝒚, 𝒔, 𝒆) be 

defined as in Figures 1 and 2. An active adversary 𝓐𝟐 is 

defined as a man-in-the-middle adversary who intercepts 𝝈 

and then modifies it before sending it back to the intended 

recipient of 𝝈. 

 

The attack is described in the following theorem. 

 

Theorem 2. Assume that (𝒂, 𝒃) are the private keys 

generated from algorithm 𝓚. Assume that (𝒙, 𝒚) are random 

values from algorithm 𝓢 and that signature 𝝈 = (𝒙, 𝒚, 𝒔, 𝒆) 

was computed using the same algorithm. If there is an active 

adversary 𝓐𝟐 according to Definition 3, then 𝓐𝟐 can forge a 

signature 𝝈′ = (𝒙, 𝒚, 𝒔′, 𝒆′), which is verified in algorithm 𝓥. 

 

Proof. Suppose that 𝝈 = (𝒙, 𝒚, 𝒔, 𝒆) was generated by Alice 

using algorithm 𝓢. Assuming 𝓐𝟐 is an adversary defined in 

Definition 3, then 𝓐𝟐 can prevent 𝝈 from reaching the 

intended receiver, Bob. 𝓐𝟐 can then compute  

 

𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−𝒔 ≡ 𝒓′(mod 𝒑) 

 

using algorithm 𝓥 as in Figure 2 then modifies 𝒓′ by 

computing 

 

𝒓′ ⋅ 𝒈𝜹 ≡ 𝒈𝒌 ⋅ 𝒈𝜹 ≡ 𝒈𝒌+𝜹 ≡ 𝒓′′(mod 𝒑) 

 

for some 𝜹 ∈ ℤ. 𝓐𝟐 also modifies 𝒔 by computing 

 

𝒔 − 𝜹 = 𝒄 − 𝒌 − 𝜹 = 𝒔′. 

 

By using 𝒓′ and a forged message, 𝑴′, 𝓐𝟐 then computes 

forged 𝒆′ by computing 

 

𝒆′ = 𝑯(𝑴′‖𝒓′′) 

 

using a hash function, 𝑯. 𝓐𝟐 then sends 𝝈′ = (𝒙, 𝒚, 𝒔′, 𝒆′) 

and 𝑴′ to Bob, acting like they are from Alice, the original 

sender. Then, Bob compute 

 

𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−𝒔′
≡ 𝒈𝒂𝒙 ⋅ 𝒈𝒃𝒚 ⋅ 𝒈−𝒔′

≡ 𝒈𝒂𝒙+𝒃𝒚−(𝒄−𝒌−𝜹) ≡ 𝒈𝒌+𝜹

≡ 𝒓′′(mod 𝒑) 

 

using algorithm 𝓥 and verifies 𝒓′′ by computing 𝑯(𝑴′‖𝒓′′) 

equal to 𝒆′ sent along with the forged 𝝈. It is shown that 𝓐𝟐 

has forged Alice's signature, 𝝈, by converting it to 𝝈′ and then 
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sending it to Bob. Bob has also verified 𝝈′, without knowing 

𝝈′ is a forgery signature. This terminates the proof.  

            ∎ 

 

 4.3.1 Countermeasures of the Third Attack 

 

The third attack is considered the most devastating 

attack on the BFHP-DLP signing scheme because it occurs 

during the most important process of the scheme, which is 

sending the signature to the intended recipient. The attack 

occurs because 𝓐𝟐 can obtain 𝒓 by computing 𝑨𝒙 ⋅ 𝑩𝒚 ⋅

𝒈−𝒔(mod 𝒑) and then modifying it. By depriving 𝓐𝟐 of 

access to the values of 𝒙 and 𝒚, it can be noticed that the 

modification can be prevented. Therefore, the modified 

signature scheme is proposed, which uses an encryption 

function 𝑬𝒏𝒄𝑲𝟏
 with the encryption key, 𝑲𝟏, and a 

decryption function 𝑫𝒆𝒄𝑲𝟐
 with the decryption key, 𝑲𝟐. The 

modified signature algorithms with their corresponding 

verification algorithms are shown in Figure 3. 

 

𝓢′: Modified signature algorithm of 𝑴 → (𝑴, 𝝈, 𝒆) 

Public ephemeral key 

           select 𝒙 randomly from ℤ𝟐𝒎  

           select 𝒚 randomly from ℤ𝟐𝒎  

Private session key 

           compute 𝒄 = 𝒂𝒙 + 𝒃𝒚 

           select 𝒌 randomly from ℤ𝟐𝒏  such that 

           𝒄 − 𝒌 > 𝟐𝒎 and 𝒏 > 𝒎. 

Encrypt verification key using Bob’s public key, 𝒊 

           compute 𝑿 = 𝑬𝒏𝒄𝑲𝟏
(𝒙) and 𝒀 = 𝑬𝒏𝒄𝒊(𝒚) 

Private computation of signing 𝑴 

           compute 𝒔 = 𝒄 − 𝒌 

           compute 𝒓 ≡ 𝒈𝒌(mod 𝒑) 

           𝒆 = 𝑯(𝑴‖𝒓) where 𝑯 is a hash function 

Output public signature 𝝈 = (𝑿, 𝒀, 𝒔, 𝒆)  

 

𝓥′: Modified verification algorithm of (𝑴, 𝝈)  

Decrypt verification key using Bob’s private key, 𝒋 

           compute 𝒙 = 𝑫𝒆𝒄𝑲𝟐
(𝑿) and y= 𝑫𝒆𝒄𝒋(𝒀) 

Verification key 

          compute 𝒓′ ≡ 𝑨𝒙 ⋅ 𝑩𝒚 ⋅ 𝒈−𝒔(mod 𝒑) 

Check whether 

          𝑯(𝑴‖𝒓′) = 𝒆 → Yes/No 

 

Figure 3. Modified signing and verification algorithms of 

BFHP-DLP signing scheme 

 

5. Conclusion 
 

Three novel cryptanalyses against the BFHP-DLP signing 

scheme are presented in this study. The first attack applies 

the latest result that successfully solves DLP. This 

countermeasure sets the parameter size of 𝒏 and 𝒎 larger 

than the values attacked by the previous result. This 

countermeasure will not affect the efficiency of the scheme 

because the size of 𝒏 and 𝒎 is the appropriate cryptographic 

size specified in the NIST standard. Then, the second attack 

highlights the danger of specifying the values of 𝒌 to be used 

multiple times, as this can expose the signing scheme to a 

side-channel method called fault analysis. To prevent this 

attack, the signing key algorithm must use an efficient 

pseudorandom number generator to ensure that 𝒌 is 

generated randomly and not static.  Finally, the last attack is 

considered the most devastating attack. It requires an active 

adversary to perform a man-in-the-middle method by 

modifying the transmitted signature 𝝈 to solve the private 

values of the scheme. The countermeasure to this attack 

introduces an encryption scheme that allows a seamless 

signing and verification process without intervention by the 

man-in-the-middle. Although the process can be redundant, 

it can be skipped once a shared private key is created, hence 

increasing its efficiency. These cryptanalyses not only focus 

on the hardness of BFHP, as in the existing cryptanalysis 

against the scheme but also cover the computational 

complexity of DLP and possible attacks against the real 

implementation of the scheme. The countermeasures 

presented will be of great use for the future deployment of 

the scheme. 
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VIRTUAL SYMPOSIUM ON MULTIDISCIPLINARY SCIENCE 2021 

ON SOME PATTERNS OF TNAF FOR SCALAR MULTIPLICATION OVER KOBLITZ CURVE 

Faridah Yunos 1ac*, Rosimah Rosli2b, and Norliana Muslim3cd 
 

 

Abstract: A 𝜏-adic non-adjacent form (TNAF) of an element 𝛼 of the ring ℤ(𝜏) is an expansion whereby the digits are generated by 

iteratively dividing 𝛼 by 𝜏, allowing the remainders of −1, 0 or 1. The application of TNAF as a multiplier of scalar multiplication (SM) on 

the Koblitz curve plays a key role in Elliptical Curve Cryptography (ECC). There are several patterns of TNAF (𝛼) expansion in the form of  

[𝑐0, 0, … ,0, 𝑐𝑙−1], [𝑐0, 0, … , 𝑐𝑙−1

2

, … ,0, 𝑐𝑙−1], 2 + 2𝑘, 3 + 4𝑘, 5 + 4𝑘 and 8𝑘1 + 8𝑘2 that have been produced in prior work in the 

literature. However, the construction of their properties based upon pyramid number formulas such as Nichomacus’s theorem and 

Faulhaber’s formula remains to be rather complex. In this work, we derive such types of TNAF in a more concise manner by applying the 

power of Frobenius map (𝜏𝑚) based on v-simplex and arithmetic sequences. 

 

Keywords: Non adjacent form, Koblitz curve, scalar multiplication. 
 

 
1. Introduction 
 

Koblitz curves are a special type of curve for which the 

Frobenius endomorphism can be applied to enhance its 

performance of computing SM (Koblitz, 1992) in ECC. It is 

defined over 𝑭𝟐𝒎   as 𝑬𝒂: 𝒚𝟐 + 𝒙𝒚 = 𝒙𝟑 + 𝒂𝒙𝟐 + 𝟏. The 

Frobenius map 𝝉: 𝑬𝒂(𝑭𝟐𝒎) → 𝑬𝒂(𝑭𝟐𝒎) is defined by 

𝝉(𝒙, 𝒚) = (𝒙𝟐, 𝒚𝟐) 𝐚𝐧𝐝 𝝉(∞) = ∞, where ∞ represents a 

point at infinity. Therefore, it satisfies the roots of the 

polynomial 𝝉𝟐 − 𝒕𝝉 + 𝟐. Since 𝝉  =
𝒕+√−𝟕

𝟐
 is a quadratic 

integer, the set ℤ(𝝉) = {𝒓 + 𝒔𝝉 | 𝒓, 𝒔 ∈ ℤ} forms a ring 

(Heuberger & Krenn, 2013b). Suppose P and Q are points on 

a Koblitz curve. SM is 𝒏 multiple repetitions of a point on the 

curve, and is denoted as 𝒏𝑷 = 𝑷 + 𝑷 + ⋯ + 𝑷, such that 

𝒏𝑷 = 𝑸. 

Solinas (1997) introduced a multiplier of SM in the form 

of TNAF on a Koblitz curve to reduce SM costs. TNAF of 

nonzero 𝜶 = 𝒓 + 𝒔𝝉 in ℤ(𝝉) can be written as TNAF (𝜶) =

∑ 𝒄𝒊𝝉𝒊𝒍−𝟏
𝒊=𝟎  where 𝒄𝒊 ∈ {−𝟏, 𝟎, 𝟏} and  𝒄𝒊𝒄𝒊+𝟏 = 𝟎. If  𝒄𝒍−𝟏 ≠ 𝟎, 

then 𝒍 is assumed to be the length of TNAF. This 𝜶 is divisible 

by 𝝉 iff r is even. That is, 
𝜶

𝝉
= (𝒔 +

𝒕𝒓

𝟐
) −

𝒓

𝟐
𝝉, where 𝒕 =

(−𝟏)𝟏−𝒂 for 𝒂 ∈ {𝟎, 𝟏}. If 𝜶 is not divisible by 𝝉 (i.e., r is odd), 

then the remainder is chosen to be either 𝟏 or −𝟏. The 

coefficients 𝒄𝒊 of TNAF are generated successively by dividing 

𝜶 with 𝝉 until 𝒓 and 𝒔 are equal to 0. Since 𝒄𝒊 𝒄𝒊+𝟏 = 𝟎, the 

next coefficient (𝒄𝒊+𝟏) of TNAF expansion after 𝒄𝒊 must be 0. 

Furthermore, it has a unique digit representation and the 

average density of nonzero digits in the expansion is 

approximately 
𝟏

𝟑
 . The following examples describe the 

division process of TNAF (𝟏 − 𝟐𝝉).  

 

Example 1. 

Here we consider 𝒏 = 𝟏 − 𝟐𝝉  and  �̅� = 𝟏 − 𝝉 represent 

the conjugate of 𝝉. Firstly, consider the elliptic curve 𝑬𝟏  

where 𝒂 = 𝟏. Therefore, 𝝉 ∙ �̅� = −𝝉𝟐 + 𝝉 = (−𝝉 + 𝟐) + 𝝉 =

𝟐 is shown.  Next, the following steps are applied for finding 

TNAF (𝒏).  

Step 1:  Since 𝟏 − 𝟐𝝉  is indivisible by 𝝉, we choose 𝒄𝟎 = 𝟏. 

That is, 
𝟏−𝟐𝝉−𝟏

𝝉
= −𝟐. Thus, TNAF(𝒏) =

[𝟏, 𝒄𝟏, 𝒄𝟐, … , 𝒄𝒍−𝟐, 𝒄𝒍−𝟏]. The next coefficient (𝒄𝟏) must be 0.  

Step 2: Since −𝟐 is divisible by 𝝉, then 𝐜𝟏 = 𝟎. That is, 
−𝟐

𝝉
=

−𝟐

𝝉
∙

�̅�

�̅�
= −𝟏 + 𝟏𝝉. Thus, TNAF(𝒏) = [𝟏, 𝟎, 𝒄𝟐, … , 𝒄𝒍−𝟐, 𝒄𝒍−𝟏]. 

Step 3:  Since −𝟏 + 𝝉 is indivisible by 𝝉, we choose 𝒄𝟐 = 𝟏. 

That is, 
−𝟏+𝟏𝝉−𝟏

𝝉
= 𝝉. Thus, TNAF(𝒏) =

[𝟏, 𝟎, 𝟏, 𝒄𝟑, 𝒄𝟒, … , 𝒄𝒍−𝟐, 𝒄𝒍−𝟏]. 

Step 4:   Since 𝝉 is divisible by 𝝉 (i.e., 
𝝉

𝝉
= 𝟏), then 𝒄𝟑 is 𝟎 and 

TNAF(𝒏) = [𝟏, 𝟎, 𝟏, 𝟎, 𝒄𝟒, … , 𝒄𝒍−𝟐, 𝒄𝒍−𝟏]. 
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Step 5:  Since 𝟏 is indivisible by  , we choose 𝒄𝟒 = 𝟏. That is, 
𝟎

𝝉
= 𝟎.  

Lastly, TNAF(𝒏) = [𝟏, 𝟎, 𝟏, 𝟎, 𝟏] = 𝟏 + 𝝉𝟐 + 𝝉𝟒 .   

 

For this example, we utilized a point 𝑷 in the form of 

polynomial basis which satisfies 𝑬𝟏. By choosing a certain 

irreducible polynomial, we can obtain the output of SM in the 

form of Q.  

Solinas (2000) also considered other properties of TNAF. 

That is,  𝜶 is divisible by 𝝉𝟐 iff 𝒓 ≡  𝟐𝒔 (𝒎𝒐𝒅 𝟒). For length 

𝒍(𝜶) > 𝟑𝟎 then  𝒍𝒐𝒈𝟐 𝑵(𝜶) − 𝟎. 𝟓𝟓 < 𝒍 (𝜶) <

𝒍𝒐𝒈𝟐 𝑵(𝜶) + 𝟑. 𝟓𝟐 , where 𝑵(𝜶) = 𝒓𝟐 + 𝒕𝒓𝒔 + 𝟐𝒔𝟐  is 

denoted as a norm of α. Besides that, he developed among 

the most efficient algorithms for converting TNAF in the form 

of 𝒓 + 𝒔𝝉 into ∑ 𝒄𝒊𝝉𝒊𝒍−𝟏
𝒊=𝟎  as follows. This can eliminate the 

elliptic doublings in SM, and increase the number of addition 

operations.  

 

Algorithm 1.1. (Converting 𝒓 + 𝒔𝝉  to ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟎 𝝉𝒊) 

Input: integers 𝒓, 𝒔 

Output: TNAF (𝒓 + 𝒔𝝉) 

Computation: 

1. 𝒄𝟎 ←  𝒓,  𝒄𝟏 ←  𝒔   

2. 𝑺 ← [ ]  

3. While 𝒄𝟎 ≠  𝟎 or 𝒄𝟏 ≠  𝟎    

4. If 𝒄𝟎 odd then  

5. 𝒖 ←  𝟐 − (𝒄𝟎 − 𝟐𝒄𝟏  𝒎𝒐𝒅 𝟒)   

6. 𝒄𝟎 ←  𝒄𝟎 − 𝒖 

7. Else 

8. 𝒖 ←  𝟎 

9. Prepend 𝒖 to 𝑺 

10. (𝒄𝟎, 𝒄𝟏) ←  (𝒄𝟏 +  
𝒕𝒄𝟎

𝟐
−

𝒄𝟎

𝟐
) 

11. End While 

12. Output 𝑺 

 

The detailed algorithm for SM of 𝒏𝑷 where n is in the 

form of TNAF (𝒓 + 𝒔𝝉) can be referred to in Algorithm 3 (see 

Solinas, 2000). Other concepts of TNAF for SM have also 

been investigated in prior research (Avanzi et al., 2007, 2011; 

Blake et al., 2008; Heuberger, 2010; Hakuta et al., 2010; 

Heuberger & Krenn, 2013a; Yunos & Atan, 2016; Yunos & 

Suberi, 2018.) on Koblitz curves as well as the other types of 

curves. 

Yunos et al. (2014) introduced 𝝉 in the expression in the 

form of 𝝉𝒊 = 𝒃𝒊 𝒕𝒊 + 𝒂𝒊𝒕
𝒊+𝟏 𝝉 , where 𝒂𝟎 = 𝟎, 𝒃𝟎 = 𝟏, 𝒂𝒊 =

𝒂𝒊−𝟏 + 𝒃𝒊−𝟏 and 𝒃𝒊 = −𝟐𝒂𝒊−𝟏 for 𝒊 > 𝟎.  It is based on the 

Lucas sequence and is useful to accelerate the process of 

transforming TNAF in the form of  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟎 𝝉𝒊  into 𝒓 + 𝒔𝝉  with  

𝒓 = ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟎  𝒃𝒊 𝒕𝒊 and 𝒔 = ∑ 𝒄𝒊

𝒍−𝟏
𝒊=𝟎 𝒂𝒊 𝒕

𝒊+𝟏 (Yunos et al., 

2015a, b, c).  

Based on their theory, we rewrite the conversion process 

developed by Suberi et al. (2018) as follows: List all the 

patterns of 𝐓𝐍𝐀𝐅(𝑨) = [𝒄𝟎, 𝟎, … , 𝟎, 𝒄𝒍−𝟏]  (see Tables 1 and 

2) and 𝐓𝐍𝐀𝐅(𝑩) = [𝒄𝟎, 𝟎, … , 𝒄𝒍−𝟏

𝟐

, … , 𝟎, 𝒄𝒍−𝟏] for 

𝒄𝟎, 𝒄𝒍−𝟏

𝟐

, 𝒄𝒍−𝟏 ∈ {−𝟏, 𝟏} (𝐬𝐞𝐞 𝐓𝐚𝐛𝐥𝐞 𝟑) and describe the 

properties of TNAF with the least number of nonzero 

coefficients, as in Proposition 1.1.    

 

Algorithm 1.2.   (Converting  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟎 𝝉𝒊 to 𝒓 + 𝒔𝝉) 

Input: coefficient 𝒄𝒊 for 𝒊 = 𝟎, 𝟏, 𝟐, … , 𝒍 − 𝟏 𝒂𝒏𝒅  trace  𝒕 =

(−𝟏)𝟏−𝒂  for  𝒂 ∈ {𝟎, 𝟏}.   

Output: 𝒓 + 𝒔𝝉  

Computation: 

1. 𝒂𝟎 ←  𝟎, 𝒃𝟎 ← 𝟏      

2. For i from 1 to 𝒍 − 𝟏 do    

3. 𝒂𝒊 ← 𝒂𝒊−𝟏 + 𝒃𝒊−𝟏      

4. 𝒃𝒊 ←  −𝟐𝒂𝒊−𝟏     

5. 𝒈𝒊  ←  𝒂𝒊𝒕
𝒊             

6. 𝒉𝒊 ←  𝒃𝒊𝒕𝒊+𝟏   

7. End do 

8. 𝒓 ←   ∑ 𝒄𝒊𝒉𝒊
𝒍−𝟏
𝒊=𝟎     

9. 𝒔 ←  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟎 𝒈𝒊 

10. Return to (r,s) 

 

Proposition 1.1. Let, 𝒂𝟎 = 𝟎 and 𝒃𝟎 = 𝟏.   If 𝝉𝒊 = 𝒃𝒊 𝒕
𝒊 +

𝒂𝒊 𝒕
𝒊+𝟏𝝉 for 𝒂𝒊 = 𝒂𝒊−𝟏 + 𝒃𝒊−𝟏 ,  𝒃𝒊 = −𝟐𝒂𝒊−𝟏  and 𝒕 ∈

 {−𝟏, 𝟏} then    

(i) 𝑻𝑵𝑨𝑭(𝒄𝟎 + 𝒄𝒍−𝟏  𝝉𝒍−𝟏)  = (𝒄𝟎 +

𝒄𝒍−𝟏 𝒃𝒍−𝟏 𝒕𝒍−𝟏 ) + (𝒄𝒍−𝟏 𝒂𝒍−𝟏 𝒕𝒍)𝝉 

for 𝒄𝟎, 𝒄𝒍−𝟏 ∈ {−𝟏, 𝟏 } and 𝒍 ≥  𝟑. 

(ii) 𝑻𝑵𝑨𝑭(± (𝟏 + 𝝉
𝒍−𝟏

𝟐  + 𝝉𝒍−𝟏 )) = ± (( 𝟏 +

𝒃𝒍−𝟏

𝟐

  𝒕
𝒍−𝟏

𝟐  + 𝒃𝒍−𝟏 𝒕𝒍−𝟏)  +  (𝒂𝒍−𝟏

𝟐

  𝒕
𝒍−𝟏

𝟐
+𝟏 +

𝒂𝒍−𝟏  𝒕𝒍) 𝝉)  

for 𝒍 = 𝟑 + 𝟐𝜼 with 𝜼 ∈ ℕ. 

 

The following is an example for Proposition 1.1. 

 

Example 2. 

TNAF ([𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏]) = 𝝉𝟔 + 𝟏 in Table 1 and 

𝐓𝐍𝐀𝐅 ([−𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏]) = −𝝉𝟔 + 𝟏 in Table 2 can be 

written as 𝟑 + 𝟓𝝉  and 𝟏 + 𝟓𝝉  respectively. The converting 

process uses Proposition 1.1 (i) and each expansion has a 

density of 2/7. Meanwhile, 𝐓𝐍𝐀𝐅([𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏]) =

𝝉𝟔 + 𝝉𝟑 + 𝟏  in Table 3 can be transformed into 𝟏 + 𝟒𝝉 by 

using Proposition 1.1 (ii) and its density 3/7.  

Yunos et al. (2019) proposes other patterns of TNAF 

expression (see Table 4) in the form of 𝐓𝐍𝐀𝐅(𝑪) =

[𝟎, 𝒄𝟏, … , 𝒄𝒍−𝟏 ] , 𝐓𝐍𝐀𝐅(𝑫) = [−𝟏, 𝒄𝟏, … , 𝒄𝒍−𝟏], 

𝐓𝐍𝐀𝐅(𝑬) =  [𝟏, 𝒄𝟏, … , 𝒄𝒍−𝟏]  and 𝐓𝐍𝐀𝐅(𝑭) =

[𝟎, 𝟎, 𝟎, 𝒄𝟑, 𝒄𝟒, … , 𝒄𝒍−𝟏 ], which occur between integer 𝜸 

from 1 to 21, which use Algorithm 1.1 for converting  

𝜸 into TNAF(𝜸) (or alternatively, use Algorithm 1.2 for 

converting TNAF(𝜸) into 𝜸). 
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Table 1. TNAF(A) with 𝑐0, 𝑐𝑙−1 = ±1 and 𝑐i = 0 for 𝑖 = 1,2, … , 𝑙 − 2  with its 𝑟 + 𝑠𝜏  and length,  3 ≤ 𝑙 ≤ 15. 

TNAF(A) 𝑟 + 𝑠𝜏 𝑙  TNAF(A) 𝑟 + 𝑠𝜏 𝑙 

±[1,0,1] ±(−1 + 𝜏) 3  ±[1,0,0,0,0,0,0,0,0,1] ±(7 − 17𝜏) 10 
±[1,0,0,1] ±(−1 − 𝜏) 4  ±[1,0,0,0,0,0,0,0,0,0,1] ±(35 − 11𝜏) 11 
±[1,0,0,0,1] ±(3 − 3𝜏) 5  ±[1,0,0,0,0,0,0,0,0,0,0,1] ±(23 + 23𝜏) 12 
±[1,0,0,0,0,1] ±(7 − 𝜏) 6  ±[1,0,0,0,0,0,0,0,0,0,0,0,1] ±(−45

+ 45𝜏) 
13 

±[1,0,0,0,0,0,1] ±(3 + 5𝜏) 7  ±[1,0,0,0,0,0,0,0,0,0,0,0,0,1] ±(−89 − 𝜏) 14 
±[1,0,0,0,0,0,0,1 ±(−9 + 7𝜏) 8  ±[1,0,0,0,0,0,0,0,0,0,0,0,0,0,1] ±(3 − 91𝜏) 15 
±[1,0,0,0,0,0,0,0,1] ±(−13 − 3𝜏) 9     

 
 
 
Table 2. TNAF(A) with 𝑐0 = ∓1, 𝑐𝑙−1 = ±1 and 𝑐i = 0 for 𝑖 = 1,2, … , 𝑙 − 2   with its     𝑟 + 𝑠𝜏  and length,  3 ≤ 𝑙 ≤ 15. 

TNAF(A) 𝑟 + 𝑠𝜏  𝑙  TNAF(A) 𝑟 + 𝑠𝜏  𝑙 

±[−1,0,1] ±(−3 + 𝜏) 3  ±[−1,0,0,0,0,0,0,0,0,1] ±(5
− 17𝜏) 

10 

±[−1,0,0,1] ±(−3 − 𝜏) 4  ±[−1,0,0,0,0,0,0,0,0,0,1] ±(33
− 11𝜏) 

11 

±[−1,0,0,0,1] ±(1 − 3𝜏) 5  ±[−1,0,0,0,0,0,0,0,0,0,0,1] ±(21
+ 23𝜏) 

12 

±[−1,0,0,0,0,1] ±(5 − 𝜏) 6  ±[−1,0,0,0,0,0,0,0,0,0,0,0,1] ±(−47
+ 45𝜏) 

13 

±[−1,0,0,0,0,0,1] ±(1 + 5𝜏) 7  ±[−1,0,0,0,0,0,0,0,0,0,0,0,0,1] ±(−91
− 𝜏) 

14 

±[−1,0,0,0,0,0,0,1] ±(−11
+ 7𝜏) 

8  ±[−1,0,0,0,0,0,0,0,0,0,0,0,0,0,1] ±(181
− 89𝜏) 

15 

±[−1,0,0,0,0,0,0,0,1] ±(−15
− 3𝜏) 

9     

 
 
Table 3. TNAF(B) with 𝑐0, 𝑐𝑙−1

2

, 𝑐𝑙−1 = ±1 and 𝑐𝑖 = 0 , 𝑖 = 1,2, … , 𝑙 − 2  with its 𝑟 + 𝑠𝜏 and length, 𝑙 = 5, 7, 9, … , 21. 

TNAF(B) 𝑟 + 𝑠𝜏 𝑙 

±[1, 0, 1, 0, 1] ±(1 − 2𝜏) 5 
±[1, 0, 0,1, 0, 0, 1] ±(1 + 4𝜏) 7 
±[1, 0, 0, 0, 1, 0, 0, 0, 1] ±(−11 − 6𝜏) 9 
±[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] ±(41 − 12𝜏) 11 
±[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1] ±(−43 + 50𝜏) 13 
±[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1] ±(−7 − 84𝜏) 15 
±[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1] ±(165 + 90𝜏) 17 
±[1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1] ±(−535 +  68𝜏) 19 

±[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] ±(949 − 636𝜏) 21 

 
Table 4. TNAF(𝜸) for integer 𝟏 ≤ 𝜸 ≤ 𝟐𝟏 and its HW and length (𝒍). 

𝜸 TNAF(𝜸) HW  𝒍  𝜸 TNAF(𝜸) HW 𝒍 

1 [𝟏] 1 1  12 [𝟎, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏] 4 9 

2 [𝟎, −𝟏, 𝟎, −𝟏] 2 4  13 [𝟏, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏] 5 9 

3 [−𝟏, 𝟎, 𝟏, 𝟎, 𝟎, −𝟏] 3 6  14 [𝟎, 𝟏, 𝟎, −𝟏, 𝟎, 𝟎, −𝟏, 𝟎, −𝟏] 4 9 

4 [𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏] 2 6  15 [−𝟏, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟎, −𝟏] 3 9 

5 [𝟏, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏] 3 6  16 [𝟎, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟎, −𝟏] 2 9 

6 [𝟎, 𝟏, 𝟎, 𝟎, 𝟎, 𝟏] 2 6  17 [𝟏, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟎, −𝟏] 3 9 

7 [−𝟏, 𝟎, 𝟎, −𝟏, 𝟎, 𝟏] 3 6  18 [𝟎, −𝟏, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎, 𝟎, −𝟏] 4 9 

8 [𝟎, 𝟎, 𝟎, −𝟏, 𝟎, 𝟏]  2 6  19 [−𝟏, 𝟎, 𝟏, 𝟎, −𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏] 5 11 

9 [𝟏, 𝟎, 𝟎, −𝟏, 𝟎, 𝟏] 3 6  20 [𝟎, 𝟎, 𝟏, 𝟎, −𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏] 4 11 

10 [𝟎, −𝟏, 𝟎, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏] 4 9  21 [𝟏, 𝟎, 𝟏, 𝟎, −𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟎, 𝟏] 5 11 

11 [−𝟏, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏, 𝟎, −𝟏] 5 9      
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Hamming Weight (HW) in Table 4 is defined as the 

number of nonzero coefficients in the expression of an 

element in ℤ(𝝉) (Solinas, 2000; Yunos & Atan, 2013). The 

following proposition illustrates the pattern of all TNAF (𝜸) in 

this table, where 𝜸 in terms of                       𝟐 + 𝟐𝒌,    𝟑 + 𝟒𝒌,

𝟓 + 𝟒𝒌 and     𝟖𝒌𝟏 + 𝟖𝒌𝟐. 

 

Proposition 1.2.  

Let k be any integer, 𝒌𝟏, 𝒌𝟐 ∈ ℕ and 𝒄𝒊 ∈ {−𝟏, 𝟎, 𝟏}. Then,  

(i) 𝑻𝑵𝑨𝑭(𝟐 + 𝟐𝒌) =  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟏 𝝉𝒊. 

(ii) 𝑻𝑵𝑨𝑭(𝟑 + 𝟒𝒌) = −𝟏 +  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟏 𝝉𝒊.  

(iii) 𝑻𝑵𝑨𝑭(𝟓 + 𝟒𝒌) = 𝟏 +  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟏 𝝉𝒊. 

(iv) TNAF(𝟖𝒌𝟏 + 𝟖𝒌𝟐) =  ∑ 𝒄𝒊
𝒍−𝟏
𝒊=𝟑 𝝉𝒊. 

This study then determines the actual formula for TNAF of A-

F in the form of  𝒓 + 𝒔𝝉. Hadani et al. (2019a, b) resolved this 

issue by applying 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 for 𝒔𝒎 =

∑𝒎
𝒊=𝟏

(−𝟐)𝒊−𝟏𝒕𝒎−𝟐𝒊+𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊  as follows.  

 

Proposition 1.3.   

If 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 for    𝒔𝒎 =

∑𝒎
𝒊=𝟏

(−𝟐)𝒊−𝟏𝒕𝒎−𝟐𝒊+𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊  and 𝒕 ∈ {−𝟏, 𝟏},   then  

(i) 𝑻𝑵𝑨𝑭(𝒄𝟎 + 𝒄𝒍−𝟏𝝉𝒍−𝟏) = (𝒄𝟎 − 𝟐𝒄𝒍−𝟏 (𝟏 +

∑𝒍−𝟐
𝒊=𝟐

(−𝟐)𝒊−𝟏𝒕𝒍−𝟏

(𝒊−𝟏)!
∏ (𝒍 − 𝟐 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 )) +  

𝒄𝒍−𝟏𝝉 (𝒕 + ∑𝒍−𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏𝒕𝒍

(𝒊−𝟏)!
∏ (𝒍 − 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 )   

for 𝒄𝟎, 𝒄𝒍−𝟏 ∈ {−𝟏, 𝟏} 𝒂𝒏𝒅 𝒍 ≥ 𝟑. 

 

(ii) TNAF(± (𝟏 + 𝝉
𝒍−𝟏

𝟐 + 𝝉𝒍−𝟏)) = ± [𝟏 − 𝟐 (𝒕𝜼+𝟏 +

∑𝜼
𝒊=𝟐

(−𝟐)𝒊−𝟏𝒕𝜼+𝟏

(𝒊−𝟏)!
∏ (𝜼 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) − 𝟐 (𝟏 +

∑𝟐𝜼+𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝟐𝜼 + 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) + (𝒕𝜼 +

∑𝟏+𝜼
𝒊=𝟐

(−𝟐)𝒊−𝟏𝒕𝜼

(𝒊−𝟏)!
∏ (𝟏 + 𝜼 − 𝒋) + 𝒕 +𝟐𝒊−𝟐

𝒋=𝒊

∑𝟐+𝟐𝜼
𝒊=𝟐

(−𝟐)𝒊−𝟏𝒕

(𝒊−𝟏)!
∏ (𝟐 + 𝟐𝜼 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) 𝝉] 

for  𝒍 = 𝟑 + 𝟐𝜼  with integer 𝜼 ≥ 𝟐.   

 

Proposition 1.4.  

Let 𝒌 be any integer, 𝒌𝟏, 𝒌𝟐 ∈ ℕ and 𝒄𝒎 ∈  {−𝟏, 𝟎, 𝟏}.  If 

𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 for 𝒔𝒎 =

∑𝒎
𝒊=𝟏

(−𝟐)𝒊−𝟏𝒕𝒎−𝟐𝒊+𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 , then  

(i) 𝑻𝑵𝑨𝑭(𝟐 + 𝟐𝒌) = −𝟐 ∑ 𝒄𝒎𝒕𝒎𝒍−𝟏
𝒎=𝟏 (𝟏 +

∑𝒎−𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) + 

𝝉 ∑ 𝒄𝒎𝒕𝒎+𝟏𝒍−𝟏
𝒎=𝟏 (𝟏 + ∑𝒎

𝒊=𝟐
(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) 

. 

(ii) 𝑻𝑵𝑨𝑭(𝟑 + 𝟒𝒌) = −𝟏 − 𝟐 ∑ 𝒄𝒎𝒕𝒎𝒍−𝟏
𝒎=𝟏 (𝟏 +

∑𝒎−𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 )   

+𝝉 ∑ 𝒄𝒎𝒕𝒎+𝟏 (𝟏 + ∑𝒎
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 −𝟐𝒊−𝟐

𝒋=𝒊
𝒍−𝟏
𝒎=𝟏

𝒋)). 

(iii) 𝑻𝑵𝑨𝑭(𝟓 + 𝟒𝒌) = 𝟏 − 𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒕𝒎 (𝟏 +

∑𝒎−𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 )+  

𝒕𝝉 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒕𝒎 (𝟏 + ∑𝒎

𝒊=𝟐
(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ).  

(iv) 𝑻𝑵𝑨𝑭(𝟖𝒌𝟏 + 𝟖𝒌𝟐) = −𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟑 𝒕𝒎 (𝟏 +

∑𝒎−𝟏
𝒊=𝟐

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝟏 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ) + 

𝒕𝝉 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟑 𝒕𝒎 (𝟏 + ∑𝒎

𝒊=𝟐
(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊 ).  

 

However, the construction of 𝒔𝒎 in Propositions 1.3 and 

1.4 are still rather complex. They are based upon the pyramid 

number formula, Nichomacus’s theorem and Faulhaber’s 

formula, as described by Hadani and Yunos (2018). The 

primary objective of this research is to derive TNAF of A-F in 

a more concise form by applying 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉, 

where 𝒔𝒎 = 𝒕𝒎+𝟏 ∑ (−𝟐)𝒊−𝟏 (
𝒎 − 𝒊
𝒊 − 𝟏

)
⌊

𝒎+𝟏

𝟐
 ⌋  

𝒊=𝟏 , which is based 

on v-simplex and arithmetic sequences. The detailed 

development of 𝒔𝒎 can be obtained in Yunos et al. (2021). 

This paper is structured as follows. In this section, we give 

some properties describing the patterns for TNAF of A - F (see 

Propositions 1.1-1.4) produced by previous researchers. In 

the next section, we describe the preliminaries of this study. 

In Section 3, we discuss how to improve Propositions 1.3 and 

1.4 using a new approach, which is the main objective of this 

research, and describe its advantages in cryptosystems. The 

final chapter concludes. 

 

2. Preliminaries 
 

The following are propositions and algorithms that were 

used throughout this study. 

 

Proposition 2.1. (Hadani et al., 2019a)  

Given 𝝉𝒎  =  𝒓𝒎  +  𝒔𝒎 𝝉  an element of  ℤ(𝝉) for 𝒎 ∈ ℤ+. 

Let 𝒔𝟏 = 𝟏 and      𝒔𝟐 = 𝒕. If     𝒇𝒊𝒎
=

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊  for 

𝟐 ≤ 𝒊 ≤
𝒎+𝟏

𝟐
 and 𝒎 ≥ 𝟐𝒊 − 𝟏, then 𝒔𝒎  =

∑ 𝒇𝒊𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒊=𝟏 𝒕𝒎−𝟐𝒊+𝟏 with 𝒇𝟏𝒎
 =  𝟏 and 𝒎 ≥  𝟑. 

Subsequently, 𝒓𝒎  =  −𝟐𝒔𝒎−𝟏. 

 

Yunos et al. (2021) described an argument that 𝒇𝒊𝒎
=

(−𝟐)𝒊−𝟏

(𝒊−𝟏)!
∏ (𝒎 − 𝒋)𝟐𝒊−𝟐

𝒋=𝒊  is equal to 𝜷𝒌𝒎
 =  (−𝟐)𝒌−𝟏 (

𝒎 − 𝒌
𝒌 − 𝟏

)  

for 𝒎 ≥  𝟐 . This new approach reduced the complexity of 

formula 𝒔𝒎 in Proposition 2.1, and obtained a more practical 

formula for 𝝉𝒎. That is,  

𝝉𝒎 =  −𝟐𝒔𝒎−𝟏  +  𝒔𝒎𝝉 =  −𝟐 ∑ 𝜷𝒌𝒎−𝟏

⌊
𝒎

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎 + 

𝝉 ∑  𝜷𝒌𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎+𝟏                           (1) 
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The first application of using this result is TNAF (𝜶) in the 

form of 𝒓 + 𝒔𝝉 can be obtained from ∑ 𝒄𝒎 𝝉𝒎𝒍−𝟏
𝒎=𝟎   , and its 

algorithm is developed as follows: 

 

Algorithm 2.2.  Converting  ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟎 𝝉𝒎 to 𝒓 + 𝒔𝝉  (Yunos et 

al., 2021) 

Input: 𝒕 ←  (−𝟏)𝟏−𝒂  for 𝒂 ∈ {𝟎, 𝟏}, all coefficients 𝒄𝒎 ∈

{−𝟏, 𝟎, 𝟏} for 𝒎 = 𝟎, 𝟏, . . . , 𝒍 − 𝟏. 

Output: 𝒓 + 𝒔𝝉  

Computation:       

1. For m from 0 to 1 do                                       

2. 𝒅𝒎 ← 𝝉𝒎                                                 

3. End do                                                              

4. For m from 2 to 𝒍 − 𝟏 do                                  

5.   𝒉𝒎 ← ⌊
𝒎

𝟐
⌋,   𝒈𝒎 ←  ⌊

𝒎+𝟏

𝟐
⌋                    

6. 𝒓𝒎 ←  𝒕𝒎 ∑  
 𝒉𝒎
𝒌=𝟏

(−𝟐)𝒌 (𝒎−𝟏−𝒌)!

(𝒌−𝟏)! (𝒎−𝟐𝒌)!
 

7. 𝒔𝒎 ←  𝒕𝒎+𝟏 ∑  
𝒈𝒎

𝒌=𝟏

(−𝟐)𝒌−𝟏 (𝒎−𝒌)!

(𝒌−𝟏)!(𝒎−𝟐𝒌+𝟏)!
 

8. 𝒅𝒎 ←  𝒓𝒎  + 𝒔𝒎𝝉 

9. End do 

10. 𝒓 + 𝒔𝝉 ← ∑  𝒍−𝟏
𝒎=𝟏 𝒄𝒎𝒅𝒎 

 

Therefore, it is easy to get back, for example: 𝟏 −

 𝟐𝝉 from 𝟏 + 𝝉𝟐 + 𝝉𝟒 (refer to the reverse calculation in 

Example 1). Besides that, transforming (𝝆𝟎 + 𝝆𝟏𝝉) 
𝝉𝒎−𝟏

𝝉−𝟏
 to 

𝒓 + 𝒔𝝉 where 𝝉𝒎, based on Equation (1), is more efficient 

than applying the Lucas sequence.  Therefore, this can 

enhance the performance of the conversion process as 

required in TNAF of n modulo (𝝆𝟎 + 𝝆𝟏𝝉) 
𝝉𝒎−𝟏

𝝉−𝟏
 prior to doing 

SM. Meanwhile, the second advantage of using Equation (1) 

is given in the following section. 

 

3. Result  
 

The following theorems improve the formulas for TNAF 

expansions of type A-F that were mentioned in Propositions 

1.3 and 1.4. 

Theorem 3.1.  If 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 for 𝒔𝒎  =

∑  𝜷𝒌𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎+𝟏, then  

(i)  𝑻𝑵𝑨𝑭(𝒄𝟎 + 𝒄𝒍−𝟏𝝉𝒍−𝟏) = (𝒄𝟎 − 𝟐𝒄𝒍−𝟏𝒔𝒍−𝟐) +

𝒄𝒍−𝟏𝒔𝒍−𝟏𝝉 

   for  𝒄𝟎, 𝒄𝒍−𝟏 ∈ {−𝟏, 𝟏} 𝐚𝐧𝐝 𝒍 ≥ 𝟑.   

(ii) TNAF (± (𝟏 + 𝝉
𝒍−𝟏

𝟐 + 𝝉𝒍−𝟏)) = ±[(𝟏 − 𝟐(𝒔𝜼 +

𝒔𝟐𝜼+𝟏)) + (𝒔𝜼+𝟏 + 𝒔𝟐𝜼+𝟐)𝝉] 

  for 𝒍 = 𝟑 + 𝟐𝜼 with integer 𝜼 ≥ 𝟐.   

Proof. 

Let 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 with 𝒔𝒎  = ∑  𝜷𝒌𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎+𝟏. 

(i) By considering 𝒎 = 𝒍 − 𝟏 for 𝒍 ≥ 𝟑 , we obtain 

𝒄𝟎 + 𝒄𝒍−𝟏𝝉𝒍−𝟏 = 𝒄𝟎 + 𝒄𝒍−𝟏(−𝟐𝒔𝒍−𝟐 + 𝒔𝒍−𝟏𝝉) = (𝒄𝟎 −

𝟐𝒄𝒍−𝟏𝒔𝒍−𝟐) + 𝒄𝒍−𝟏𝒔𝒍−𝟏𝝉. 

 

(ii) Suppose 𝒍 = 𝟑 + 𝟐𝜼 for integer 𝜼 ≥ 𝟐,  thus  𝒍 − 𝟏 =

𝟐 + 𝟐𝜼 and  
𝒍−𝟏

𝟐
= 𝟏 + 𝜼.    

Now,  ± (𝟏 + 𝝉
𝒍−𝟏

𝟐 + 𝝉𝒍−𝟏) = ±[𝟏 + 𝝉𝟏+𝜼 + 𝝉𝟐+𝟐𝜼]  

= ± [(𝟏 + (−𝟐𝒔𝜼 + 𝒔𝟏+𝜼𝝉) + (−𝟐𝒔𝟐𝜼+𝟏 + 𝒔𝟐+𝟐𝜼𝝉))]  

= ±[(𝟏 − 𝟐𝒔𝜼 − 𝟐𝒔𝟐𝜼+𝟏) + (𝒔𝟏+𝜼 + 𝒔𝟐+𝟐𝜼)𝝉].  

 This completes the proof. 

Theorem 3.2. Let 𝒌 be any integer, 𝒌𝟏, 𝒌𝟐 ∈ ℕ, and 𝒄𝒎 ∈

 {−𝟏, 𝟎, 𝟏}.  If 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉 for 𝒔𝒎  =

∑  𝜷𝒌𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎+𝟏 , then 

(i) TNAF (𝟐 + 𝟐𝒌) = −𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒔𝒎−𝟏 +𝝉 ∑ 𝒄𝒎

𝒍−𝟏
𝒎=𝟏 𝒔𝒎. 

(ii) TNAF (𝟑 + 𝟒𝒌) = −𝟏 − 𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒔𝒎−𝟏 +

𝝉 ∑ 𝒄𝒎𝒔𝒎.𝒍−𝟏
𝒎=𝟏   

(iii) TNAF (𝟓 + 𝟒𝒌) = 𝟏 − 𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒔𝒎−𝟏 +

𝝉 ∑ 𝒄𝒎𝒔𝒎.𝒍−𝟏
𝒎=𝟏   

(iv) TNAF(𝟖𝒌𝟏 + 𝟖𝒌𝟐) =

−𝟐 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟑 𝒔𝒎−𝟏+𝝉 ∑ 𝒄𝒎

𝒍−𝟏
𝒎=𝟑 𝒔𝒎. 

Proof.  

Let 𝝉𝒎 = −𝟐𝒔𝒎−𝟏 + 𝒔𝒎𝝉  with 𝒔𝒎 =  ∑  𝜷𝒌𝒎

⌊
𝒎+𝟏

𝟐
 ⌋  

𝒌=𝟏
𝒕𝒎+𝟏. 

(i)  By using Proposition 1.2 (i), we have 

 𝐓𝐍𝐀𝐅(𝟐 + 𝟐𝒌) = ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝝉𝒎 = −𝟐 ∑ 𝒄𝒎𝒔𝒎−𝟏

𝒍−𝟏
𝒎=𝟏 +

𝝉 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝒔𝒎. 

(ii) By using Proposition 1.2 (ii), we have 

 𝐓𝐍𝐀𝐅(𝟑 + 𝟒𝒌) = −𝟏 + ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝝉𝒎  

= (−𝟏 − 𝟐 ∑ 𝒄𝒎𝒔𝒎−𝟏
𝒍−𝟏
𝒎=𝟏 ) + 𝝉 ∑ 𝒄𝒎

𝒍−𝟏
𝒎=𝟏 𝒔𝒎.  

(iii) By using Proposition 1.2 (iii), we have 

 𝐓𝐍𝐀𝐅(𝟓 + 𝟒𝒌) = 𝟏 + ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝝉𝒎  

= (𝟏 − 𝟐 ∑ 𝒄𝒎𝒔𝒎−𝟏
𝒍−𝟏
𝒎=𝟏 ) + 𝝉 ∑ 𝒄𝒎

𝒍−𝟏
𝒎=𝟏 𝒔𝒎.  

(iv) By using Proposition 1.2 (iv), we have 

TNAF(𝟖𝒌𝟏 + 𝟖𝒌𝟐) = ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟑 𝝉𝒎 = −𝟐 ∑ 𝒄𝒎𝒔𝒎−𝟏

𝒍−𝟏
𝒎=𝟑 +

𝝉 ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟑 𝒔𝒎 . 

This completes the proof.  

 

Consequently, we can create another algorithm that has 

a similar performance to the running process with Algorithm 

2.2 for converting TNAF (for example of types A and E) in the 

form of  ∑ 𝒄𝒎
𝒍−𝟏
𝒎=𝟏 𝝉𝒎 to 𝒓 + 𝒔𝝉 (refer to the formulas of r and 

s in Theorem 3.1 part (i) and Theorem 3.2 part (iii)) as follows: 

 

Algorithm 3.1.   

Input:   𝒕 ←  (−𝟏)𝟏−𝒂 for 𝒂 ∈ {𝟎, 𝟏}, all coefficients 𝒄𝒎 ∈

{−𝟏, 𝟎, 𝟏} for 𝒎 = 𝟏, . . . , 𝒍 − 𝟏. 

Output: 𝒓 + 𝒔𝝉 

Computation:           

1. For m from 1 to 𝒍 − 𝟏 do    

2. 𝒉𝒎 ← ⌊
𝒎

𝟐
⌋,   𝒈𝒎 ←  ⌊

𝒎+𝟏

𝟐
⌋   

3. 𝒓𝒎 ←  𝒕𝒎 ∑  
𝒉𝒎
𝒌=𝟏

(−𝟐)𝒌 (𝒎−𝟏−𝒌)!

(𝒌−𝟏)! (𝒎−𝟐𝒌)!
            

4. 𝒔𝒎 ←  𝒕𝒎+𝟏 ∑  
𝒈𝒎

𝒌=𝟏

(−𝟐)𝒌−𝟏 (𝒎−𝒌)!

(𝒌−𝟏)!(𝒎−𝟐𝒌+𝟏)!
    

5. End do 

6. 𝒓 ←  𝟏 − 𝟐 ∑  𝒍−𝟏
𝒎=𝟏 𝒄𝒎𝒔𝒎−𝟏 

7. 𝒔 ←  ∑  𝒍−𝟏
𝒎=𝟏 𝒄𝒎𝒔𝒎 
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8. Return(𝒓, 𝒔) 

 

Besides, Figure A1 illustrates this algorithm by applying 

Maple programming with a computer with an Intel(R) Core 

(TM) i7 processor, 8 GB RAM and a 64-bit operating system.   

This result is also an extension of a prior study (Suberi et al., 

2016; Yunos & Suberi, 2018) to scrutinize the property of 

unsecure keys prior to doing SM on Koblitz Curves. Algorithm 

3.1 helps Alice to list down some patterns of unsecure keys 

and acts as a multiplier of SM before sending a cypher text 

(𝑸) to Bob.  The following example is an impact of being able 

to identify a plain text (𝑷) by choosing some value of  

𝒓 + 𝒔𝝉  and their TNAF and 𝑸.   

 

TNAF 𝒓 + 𝒔𝝉 𝑸 = 𝒏𝑷 

[𝟏, 𝟎, 𝟏] −𝟏 + 𝝉 (𝒙𝟐 + 𝒙 + 𝟏, 𝟎) 

[𝟏, 𝟎, 𝟎, 𝟏] −𝟏 − 𝝉 (𝒙 + 𝟏, 𝒙 + 𝟏) 

[𝟏, 𝟎, 𝟎, 𝟎, 𝟏] 𝟑 − 𝟑𝝉 (𝒙 + 𝟏, 𝟎) 

[𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏] 𝟕 − 𝝉 (𝒙𝟐 + 𝒙 + 𝟏, 𝟎) 

 

Although Alice sends different values of 𝑸 to Bob with 

different multipliers of P,   

the third parties can attack 𝑷 = (𝒙, 𝒙𝟐 + 𝟏) easily. 

Therefore, such keys need to be avoided in real-world 

scenarios of cryptosystems.  

 

5. Conclusion 
 

In this work, we derive TNAF of types A-F in more concise 

forms by applying Equation (1), which is based on v-simplex 

and arithmetic sequences. This research can be extended by 

looking at the nature of such patterns such that TNAF has a 

low-density. Besides, their possible attacks by third parties 

need to be explored when implementing such kinds of 

expansions as secret keys.  
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Appendix 

 

Figure A1. Programming for Algorithm 3.1 by Using Maple 
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VIRTUAL SYMPOSIUM ON MULTIDISCIPLINARY SCIENCE 2021 

EX VIVO TERAHERTZ IMAGING REFLECTION OF MALIGNANT AND BENIGN HUMAN 
BREAST TUMORS 
Amel Al-Ibadi* 
 

 

Abstract: This study evaluated the effectiveness of spectroscopy and imaging tools, using a previously-unexplored (0.2- 1.4) terahertz 

range, for investigating tumors in human tissue and distinguishing between malignant and benign cancer cells. One advantage of this 

technique is that terahertz radiation in this frequency range passes through human tissue without causing ionization or any negative 

effects To assess the effectiveness of this band of frequencies, THz data were collected from 10 different fresh breast tissue samples, 

extracted directly after excision. The optical properties were investigated at a range of low frequencies and THz imaging revealed good 

contrast between the different types of fresh tissue. Observations indicated that the optical and electrical properties in the low-frequency 

(0.3-0.5) range provided accurate information about breast cancer tissue. These results demonstrated the effectiveness of the technique 

up to 0.5 THz for ex vivo studies in medical applications. 

 

Keywords: Terahertz imaging, terahertz radiation, medical & biological tissues and tissue characterizations. 
 

 
1. Introduction 
 

This Terahertz spectroscopy and imaging technique was 

used to produce two- or three-dimensional images of an 

object, using THz radiation (0.1 to 10THz) beamed directly or 

reflected through the samples, thus providing highly 

accurate information about tissues inaccessible to other 

technologies (Gong et al., 2020). Terahertz radiation is non-

ionized (Peter et al., 2013)  and harmless to the objects tested 

(Yu et al., 2012). Terahertz radiation, in the low-millimeter 

waveband, is highly absorbed in the water in living tissues 

(Wilmink & Grundt, 2011). The Terahertz team used a 

terahertz technique to visualize and analyze human tissue, 

with the aim of detecting and identifying different types of 

cancer tumors and comparing these images with the results 

of laboratory analysis by a medical oncology team. Previous 

studies asserted that terahertz imaging facilitated early 

cancer detection in tissues, before it became visible, 

widespread, or sensitive to any other technique. Moreover, 

in samples exposed to terahertz radiation, diseased tissues 

were readily distinguished from healthy tissues, making this 

technique an effective tool for future medical applications ( 

Cassar et al., 2018). In particular, the absorption and 

refraction coefficients of tumor tissues were higher than 

those of healthy tissues (Wahaia et al., 2020). Differences 

between tissue regions had previously been studied 

between 500 and 600 GHz (Al-Ibadi et al., 2017). The 

distinction, variation, and differences in physical 

characteristics between tissues are due to the presence of 

water and changes in the composition of the infected tissue, 

such as higher cell and protein density and increased water 

content (Sun et al., 2013). Access to all information relating 

to the tissue is through exposure to terahertz radiation 

within a specified range of frequencies and the formation of 

adequate images of areas with confirmed or suspected 

tumors that distinguish them from healthy regions (Cassar et 

al., 2018). Previous research confirmed that cancer tumors 

had higher absorption and refraction factors than healthy 

tissues within a given frequency range (Fan et al., 2014). 

Terahertz spectroscopy is highly effective at distinguishing 

tumors from healthy tissues (El-Shenawee et al., 2019), thus 

helping surgeons remove tumors more precisely and avoid 

cutting out too much healthy tissue. The assurance of leaving 

no cancerous tissue in the patient's body minimizes the need 

for extensive removal of healthy tissue around the tumor, 

which is considered a safety precaution, but is prejudicial to 

patients and significantly extends recovery time, as well as 

avoiding repeated operations in the future. Recent research 

and studies suggest that the terahertz imaging technique is 

capable of distinguishing between infected and healthy 

tissue and provides valuable tissue-related diagnostic 

information that cannot be obtained using currently-

available imaging techniques (Al-Ibadi et al., 2017).  

Cancer is the second leading cause of death in the world, 

with outcomes exacerbated by late onset of symptoms and 

widespread lack of diagnostic and therapeutic services. Cells 

in malignant tumors (cancer) grow and divide rapidly and 

uncontrollably, leading to invasion and damage of natural 
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tissue (WHO, 2017). The main diagnostic steps of examining 

tissue from the patient, identifying infected cells, 

distinguishing them from healthy tissue, and delivering the 

result may take at least 10 days. The diagnosis may be 

inaccurate, potentially leading to repeated excisions of 

infected tissue surrounded by insufficient amounts of intact 

tissue, which has not only physical, but also psychological 

and financial implications for the patient. 

Cancer is not defined by one type or specific, persistent 

symptoms, since cancer cells continue unlimited division, 

accompanied by changes in their synthesis, functional and 

behavioral characteristics (Wang et al., 2014). Terahertz rays 

used to detect cancer and determine the degree of 

proliferation penetrate the tissue without causing any 

biological changes (Hejmadi, 2010).  

The aim of this study on breast cancer was to identify the 

different regions in excised biological tissue and examine 

their physical properties, especially their dielectric 

properties, using terahertz imaging and spectroscopy to 

discriminate between tumors and normal tissue. THz 

radiation is produced by centering ultrafast (100fs) laser light 

on the space between the electrodes at near infrared 

wavelengths (a Ti:Sapphire laser with a central wavelength 

of 800 nm). Free-carrier acceleration results in the figuration 

of the transverse photoreceptor connected with an antenna, 

producing a wide band of frequencies between 100 GHz and 

3 THz. Coherent photoconductor detection is achieved using 

a photonic antenna similar to the emitter. The signal-to-

noise ratio is around 4000: 1, limited by the thermal noise of 

the antenna.  

 

 

 

Figure 1. Schematic of Teraview system 

 

 

2. Experimental Method 
 

These experiments were conducted using a 

commercially-available TeraView 3000 (Teraview Ltd, 

Cambridge, UK, 2001) with a reflection system (Figure.1) to 

determine the complex dielectric properties of fresh tissues, 

initially to qualify the setup and data processing. A set of 10 

fresh tissue samples were surgically removed from women’s 

breasts (age range: 40-60 years) for cancer analysis. The 

standard operating procedure was followed at the Bergonié 

Institute in Bordeaux (France) to obtain human tissue 

sections containing breast cancer. The sapphire substrate 

was chosen to avoid bio-impact. The sample was fixed on the 

motor to scan THz pulse reflectivity. Step size and acquisition 

time depended on sample size. The system was purged of 

water particles by injecting dry air. Spatial resolution was 

determined by our system setup and the frequency used in 

this work. The samples were fixed between two 1 mm-thick 

quartz plates with slight pressure to avoid air gaps between 

the tissue and the quartz surface (Figure 2). The reflected THz 

pulse was measured with and without the sample to extract 

data on the frequency-dependent physical properties of the 

sample, detected by the second reflected pulse (from the 

sapphire-sample interface). The optical properties of these 

samples in the 0.2-1.4 THz range are presented in Figure 4. 

THz spectroscopy was also used in reflective mode, focusing 

on the acquisition of images to determine breast cancer. 

Analysis of processed THz images in the time and frequency 

domain presented in Figure 3 and their optical properties 

were used to distinguish between tumors and healthy tissues 

with high accuracy. These THz images were highly correlated 

with the histopathological images.  

 

 
 

Figure 2. Schematic of the study sample (yellow) between two 

sapphire (white) windows with thickness (d). The two main 

reflex peaks. The bottom peak (THz out) reflected from the 

sapphire-air interface (without sample) and from the sapphire-

sample interface (with sample). 

 

2.1 Breast tissue sample preparation 

 

After surgery, the tissues were prepared in accordance 

with standard laboratory methods for tissue collection, 

preparation, and fixation, for examination by pathologists at 

the Bergonié institute in Bordeaux (France). All samples were 

taken during breast surgery and all studies were 

histologically confirmed by a pathologist. Additionally, a 

pathologist identified diseased and healthy tissue in all 

samples for THz imaging. Appropriate healthy and infected 

tissues were determined by comparison with samples 

examined using the terahertz technique.  
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2.2 Data acquisition 

 

The THz pulses were focused on a 3 mm-thick sample 

placed flat between the sapphire substrates at an incident 

angle of 10 deg. THz images were measured by a raster 

reflection scanning system, where the sample stage was 

moved two-dimensionally (2D) in an x-y plane on exposure 

to the THz waves with step size 0.2 mm, to measure the THz 

signals reflected in each pixel area. All reflection signals from 

the recorded samples scanned produced 4096 data points, 

giving a three-dimensional THz image. A two-dimensional 

image of the amplified signal through the THz scanning beam 

was created in each pixel of the image (Figure 4). 

 

2.3 Image processing 

 

After THz collection and processing, the data on the 

relevant frequency range was sufficiently accurate for 

feature detection. A number of challenges potentially 

accounted for error in our measurements, such as variations 

in biological tissue, including less-homogenous composition, 

uneven surfaces, changes through measurements, and 

aging. In the THz system, the curvature of the imaging 

window, irregular connection with the sample, and multiple 

reflections of THz pulses were also potential sources of error. 

For these reasons, mathematical operations, such as peak 

intensity and peak to peak intensity, were selected to obtain 

THz images based on the time-frequency domain (Ballacey et 

al., 2016). Processing thus determined the intensity level of 

each pixel in the image, to ensure that the THz images would 

provide accurate data on the amplitude of the THz signal 

reflected from the fresh tissue in various positions, over a 

range of frequencies, as shown in Figure 4a.  

 

2.4 Data processing  

 

Data processing was applied to the THz images and the 

optical properties of the samples. This involved removing 

background noise by averaging each pixel signal. These 

signals were then isolated from the dataset, using a zero-

padding algorithm to improve the second peak interface of 

the remaining signal (Fan et al., 2016). The information 

related to the application of the time domain in the fast 

Fourier transform process (FFT) was converted to the 

frequency domain. Analytical data were processed using 

MATLAB code.  

 

3. Results  
 

Different THz images of the 0.2 mm-thick fresh tissue 

samples on a sapphire window, recorded at 0.8 THz in 

reflection mode, were obtained by automatic processing, 

using mathematical operations in both time and frequency 

domains, and distinguished between cancerous (abnormal) 

and fatty (healthy) regions, see Figure 3. The imaging results 

 

Figure 3. a) Optical image of the tissue studied, b and c) Automatic extraction of the different THz images based on the time-

frequency domain, in order of mathematical operations, respectively, from left to right: Diff, Div, derivative, energy-entropy, 

FWHM [0-max] down, FWHM [0-max] up, FWHM [min-max] up, max, mean, min, mult, entropy-Shannon, and sum operation 

processes. 
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varied depending on the different mathematical operations, 

but this method provided rapid identification of cancer 

tissues compared with standard clinical reports. Tumors 

were clearly delineated in the THz images in the frequency 

and time domain, compared with histopathology images, 

showing the distribution of cancer cells within the fatty 

regions. Additionally, good agreement was observed 

between fatty and cancer tissue in both techniques. The 

variation in image contrast in the time-frequency domain 

may be explained by differences in biological composition 

between fat and cancer tissues. 

Figure 4 (b & c) shows the close match between the 1.4 

THz image and that of the 3 µm-thick tissue sample 

embedded in a paraffin block, where the infected region 

shows more variation than the healthy region. In terms of 

physical analysis, the results confirmed that identification of 

the cancer region was more effective than the healthy 

region, as shown in Figure 4a, comparing the average 

amplitude of tumors and normal tissue. Significant 

differences in amplitude were clearly observed at 

frequencies ranging from 0.2 to 1.4 THz. Figure 4a illustrates 

the behavior of THz pulses progressing through each region 

of fresh breast tissue. 

The average values for tumors and healthy tissues at 1 THz 

were 44.6 (a.u.) ± 0.23 and 40.3 ± 0.20, respectively. Thus, 

the fatty tissue exhibited less frequency-dependent 

amplitude, which may explain the increased THz reflection 

pulses on the THz detector, while the cancer tissue exhibited 

higher amplitude. In addition, Figure 4a shows that 

amplitudes for the normal and cancer tissues decreased at 

1.4 THz, possibly suggesting that the THz signals reflected 

from the sample fell to the noise floor. Different regions of 

the sample are clearly distinguished and there was good 

correspondence between the THz images and 

histopathology slides.   

The THz data was processed to extract refractive indices, 

absorption coefficients and averages of biological tissues 

from different regions, as reported in Table 1. The results 

revealed that, in the 0.3- 0.5 THz range, the optical 

properties (refractive indices and absorption coefficients) of 

normal tissue were lower than those of abnormal tissue 

(cancer). In addition, the dielectric properties of normal and 

 

Figure 4. a) Absorption coefficients of infected (cancerous) and healthy tissue, b) Image of a 3 micrometer-thick stained tissue sample, c) 

image of a 3 millimeter-thick sample of the same tissue at a frequency of 1.4 THz. 
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abnormal tissues were calculated using a Debye double-

relaxation model (Pashkin et al., 2003). Furthermore, a water 

reference was measured before the tissue samples were 

processed to correct variations in data extraction using 

Equation 1. A detailed description of the extraction of the 

refractive index and absorption coefficient is given in the 

article cited (Pashkin et al., 2003):  

 

ℇ𝒄 = ℇ∞ +
ℇ𝒔−ℇ𝟏

𝟏+𝒊𝒘𝒕𝑫
+

ℇ𝟏−ℇ∞

𝟏+𝒊𝒘𝒕𝟐
                       (1) 

 

Where εc is the dielectric function, ε  is the dielectric 

constant at high frequencies, εs is the static dielectric 

constant, ε1 is the dielectric function of the long and fast 

relaxation process, occurring over τ1 and τ2, respectively, at 

pulsation ω. These results indicated that the dielectric 

properties (conductivity (𝛔) and permittivity (𝛆)) (Joyce et 

al., 2016) of normal tissue were lower than those of 

abnormal tissue. The refractive index 𝐧(𝛚) and absorption 

coefficient 𝛂(𝛚) of the sample were calculated using the 

equation. 

For data analysis, the frequency-dependent absorption 

coefficient and refractive index were obtained using 

equations 2 and 2, respectively, giving values of αsample, and 

nsample. A detailed description of the extraction of the 

refractive index and absorption coefficient is given in the 

article cited (Fan et al., 2016). 

 

𝒏𝒔 = 𝒓𝒆𝒂𝒍 (�̃�𝒔(𝝎))                           (2) 

𝜶𝒔 =
𝟐𝝎 .𝒌(𝝎)) 

𝒄
                                       (3) 

These results showed that the optical properties of fresh 

tissue, especially the refractive index (RI) and absorption 

coefficients (α), measured ex- vivo by spectral analysis in the 

0.3-0.5 THz range, were systematically higher in tumors than 

in healthy tissue. In addition, the measured complex 

dielectric properties of the tissues increased, so we 

compared the conductivity and permittivity of abnormal and 

normal tissue with those of water. Consequently, the 

interaction of THz radiation with fresh tissue provided 

valuable information for quantifying the dielectric properties 

of breast tissue in the THz range. Moreover, the measured 

dielectric properties of the different breast tissues differed 

from the extracted data, depending on their optical 

properties. The significant difference between normal breast 

and cancerous tissue revealed that analysis of THz reflection 

parameters had the potential to differentiate between 

tumors and healthy tissues. Details of these THz properties 

are presented with average values and standard errors in 

Table 1. In conclusion, THz reflection spectroscopy is capable 

of measuring the dielectric coefficients of tumor and healthy 

tissue, and differentiating between them, due to their 

different structures. In addition, the identification of 

cancerous and healthy tissue in each sample was verified by 

a histopathologist, who provided information on the tissue 

types for evaluating the accuracy of the reflected THz 

spectroscopy measurements. 

 

5. Conclusions  
A comparison of terahertz radiation imaging with classic, 

slide-based tissue samples confirmed that this technique has 

the potential to provide reliable detection of cancer tumors. 

The accuracy of the THz technique varied among the 

different types of complex excised breast tissues and 

substrate materials used in this study, possibly due to 

scattering effects or the interaction of THz radiation with 

samples and substrates, as shown in Figure 3. 
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VIRTUAL SYMPOSIUM ON MULTIDISCIPLINARY SCIENCE 2021 

GROUP DIAGNOSTIC MEASURES OF DIFFERENT TYPES OF OUTLIERS IN MULTIPLE 
LINEAR REGRESSION MODEL 
Hassan S. Uraibi 1a* and Sawsan Abdul Ameer Haraj 2a 
 

 

Abstract: The topic of detection outliers is one of the crucial topics that have been of interest to researchers in many scientific fields. The 

presence of outliers in the dataset may lead to the breakdown of the estimator of the method in use. The statistical literature has shown 

that several types of outliers occur according to the type and nature of the data. Therefore, the researchers concentrated on identifying 

the type of outliers of statistical models by using two diagnostic procedures, individual and grouped. Unfortunately, the first procedure 

neglects the effect of the phenomenon of (masking and swamping). In contrast, the second procedure has not been able to eliminate this 

phenomenon ideally but rather reduce the rates of its appearance. This paper seeks to suggest improving one of the well-known group 

diagnostic methods (DRGP) by using an RMVN location and scale matrix instead of MVE to reduce the effect of (swamping). A newly 

proposed method denoted as DRGP(RMVN) is tested with a simulation study and real data. The results have shown that the performance 

of our proposed method is more efficient than (DRGP.MVE) to reduce the swamping points. 

 

Keywords: Masking, Swamping, Leverage Point, DRGP and RMVN 
 

 
1. Introduction 
 

The topic of outlier detection in the samples data taken 

out of its statistical populations was not a topic that 

interested researchers in diverse scientific fields until the 

sixties of the last century. It also was a reason that statistical 

schools were divided into two schools, classical and robust. 

The classical school sticks to the theoretical basis to assume 

the normal distribution of sample data drawn randomly from 

its statistical population (Uraibi and Alhussieny, 2021). On 

the other hand, the founder Gauss had put a particular 

hypothesis that randomly chosen observations from its 

statistical population are independent and identically 

distributed (Huber, 1981). Most of the researchers found 

that one of the most important reasons behind the deviation 

of the specific distribution hypothesis is the presence of 

outliers, so it is of importance in the place of diagnosing 

these values that are considered far away from the centre of 

the gathering bulk of data (Hample et al., 1986).  Apart from 

that, Rousseuw and Zomeren (1990) defined the outliers as 

being observations that lie away from most of the remaining 

data, which constitutes (1% ) to (10%) out of any group of 

data in our natural world. Recently, a group of researchers 

showed that this ratio could be raised to more than (25%) 

and less than (50%), but it is inevitable even if this data is of 

high quality (Uraibi and Alhussieny, 2021). 

Moreover, Huber (1981) pointed out that the presence of 

one outlier at least in the data group leads to the breakdown 

of the statistical estimator. Great efforts were made in the 

statistical literature to identify all the outliers in linear 

regression, such as single diagnostic methods (see, 

Rousseeuw and Leroy, 1987). Unfortunately, those methods 

did not take into consideration the phenomenon of masking 

and swamping, which leads to their being unable to detect 

all types of outliers (Vertical Outliers  (VO) and High Leverage 

Point (HLP)) accurately in the data set. The single diagnostic 

conceals in its folds the wrong diagnosis when its methods 

detect one or more than one observation as outliers, but it's 

not. This phenomenon is called (swamping) (see, Maroona 

and Yohai, 2006). 

On the other hand, may these methods suffer from the 

masking phenomenon in which the detected outliers 

probably overshadow other outliers. Therefore, the 

particular diagnostic method could not detect the outliers 

masked by other outliers (Rousseuw and Zomeren,1990). 

Consequently, Imon (2002) introduced a group deleted 

measure as a Generalize Potential (GP) measure to eliminate 

the effect of masking and swamping. However, Midi et al. 

(2009) found out that GP could not identify the exact number 

of leverage points and still suffer from the effect of masking 

and swamping. Therefore, they proposed utilizing Minimum 

Volume Ellipsoid (MVE) (Rousseeuw, 1984) to build a new 

algorithm which is a so-called Diagnostic Robust Generalized 
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Potential measure (DRGP).  The target of an algorithm is to 

the sake of accurate diagnostic and reducing the effect of 

masking and swamping. We noted that DRGP based on MVE 

( DRGP.MVE) may tackle the problem of identifying the exact 

number of leverage points. Still, it is not adequately effective 

in reducing the number of masking and swamping or getting 

rid of its effects.  

Olive and Hawkins (2010) introduced Reweighted 

MultiVraite Normal (RMVN) as a robust, fast, and consistent 

concentration algorithm to produce a robust location and 

scale estimator. Due to these aspects, RMVN is more 

relevant to DRGP than MVE. On the other hand, it is well 

known that DRGP.MVE algorithm relies on Robust 

Mahanalobis Distance (RMD) that is integrated with MVE 

estimators, see (Uraibi and Midi;2009). In this paper, a slight 

development to the DRGP is proposed, and we call it 

DRGP.RMVN by incorporating RMVN with RMD instead of 

MVE. This paper is organized to present the DRGP(MVE) 

measure in Section 2. Meanwhile, Section 3 describes the 

DRGP(RMVN) method. Lastly, Section 4 and Section 5 

illustrate simulation study and numerical examples to assess 

the performance of the DRGP(RMVN) method. 

 

2. DRGP Measure 
 

The idea of this method essentially relies on the first step 

in which a robust-generalized diagnostics procedure for HLP 

by using MD is employed with MVE location and scatter 

estimators. Then, the GP algorithm proposed by Imon (2002) 

is utilized. Suppose that  𝑿 is a matrix of multivariate random 

varaibles. The algorithm of DRGP.MVE can be described as 

follows: 

 

1. Computing the location �̂� and scale 𝑪𝑴𝑽𝑬(𝑿) estimators 

of MVE, denoted as. 

2. Finding the mahalanobis distance (𝑴𝑫) using Eq. (1) if 

the 𝒊𝒕𝒉 𝑴𝑫 (𝑴𝑽𝑬) > √𝝌(𝒑,𝟎.𝟗𝟓)
𝟐 . Then. the 𝒊𝒕𝒉 row has 

the suspected observations as HLP.  

𝑹𝑴𝑫𝒊(𝑴𝑽𝑬)

=  √[𝑿 − �̂�(𝑿)]׳[𝑪𝑴𝑽𝑬(𝑿)]
−𝟏[𝑿 − �̂�(𝑿)]  𝒊

= 𝟏, 𝟐,… , 𝒏   (𝟏) 

3. The rows are determined including HLPs, which are 

deleted from the design matrix 𝑿 and placed as a new 

submatrix denoted as 𝑿𝑫. The remaining rows that have 

only clean observations will be substituted as 𝑿𝑹 matrix. 

In other word, 𝐑 and 𝐃 are sets of any arbitrary remaining 

and deleted cases, respectively.  Hence, R consist of  (𝒏 −

𝒅) cases after 𝒅 cases in 𝐃 are deleted, where 𝒅 < (𝒏 −

𝒑), 𝒏 is the sample size and 𝒑 is the number of variables.  

4. Habshah et al. (2009) pointed out without loss of 

generality, those observations are assumed to be the last 

of d rows of X, such that the weight matrix, 𝑯 =

𝑿(𝑿𝒕𝑿)−𝟏𝑿𝒕 can be decomposed as follows: 

𝐰 = [
𝐔𝐑 𝐕

𝐕 ׳ 𝐔𝐃
] , 

where 𝑼𝐑 = 𝑿𝐑 (𝑿
(𝑿׳

−𝟏
𝑿𝐑

׳
, 𝐔𝐃 = 𝑿𝐃 (𝑿

(𝑿׳
−𝟏
𝑿𝐃

׳
, are 

symmetric matrices of (𝒏 − 𝒅) and 𝒅 cases, respectively, 

and  𝑽 = 𝑿𝑹 (𝑿
(𝑿׳

−𝟏
𝑿𝐃

׳
 be an (𝒏 − 𝒅) × 𝒅 matrix. 

 

When a group of observations 𝐃 is omitted, the 𝑾𝒊𝒊
(−𝐃)

=

 𝑿𝒊
׳
(𝑿𝑹 

׳
𝑿𝑹)

−𝟏

𝑿𝒊 . Deletion the  𝒊𝒕𝒉 diagonal element where 

𝐃 = 𝒊 result in  𝑾𝒊𝒊
(−𝒊)

= 𝑿𝒊
׳
(𝑿(𝒊) 

׳
𝑿(𝒊))

−𝟏

𝑿𝒊, which is a single 

diagnostic procedure equivalent to Hadi potential measure.  

 

Finally, the group deletion measure based on MVE can be 

written as follows, 

𝑷𝐢𝐢 =

{
 

     𝑾𝐢𝐢
(−𝐃)

                  ∀𝐢 ∈ 𝐃,

𝑾𝐢𝐢
(−𝐃)

𝟏 −𝑾𝐢𝐢
(−𝐃)

               ∀𝐢 ∈ 𝐑.
 

Moreover, when  𝑷𝐢𝐢 > 𝒎𝒆𝒅𝒊𝒂𝒏(𝑷𝐢𝐢) + 𝒄𝑴𝑨𝑫(𝑷𝐢𝐢), it 

is confirmed the 𝒊𝒕𝒉 row has an HLP.   

 

2.1 The DRGP(RMVN) Measure 

 

The contribution of the suggested method is to 

incorporate the Reweighted Multivariate Normal estimators 

(RMVN) instead of (MVE) estimators within the DRGP 

algorithm. For example, Olive and Hawkins (2010) proposed 

the RMVN method to reweight multivariate standard 

estimators using a fast and consistent algorithm with a high 

breakdown point. In the first two stages, the estimators of 

two locations and scale have been computed, which are the 

DGK (Devlin et al., 1981) and Median Ball (MD) (Olive,2004). 

The DGK and MB are fast concentration algorithms that could 

converge during 5 to 10-steps. 

Suppose that (𝑻𝟓,𝑫𝑮𝑲 , 𝑪𝟓,𝑫𝑮𝑲) are the DGK estimators 

and (𝑻𝟓,𝑴𝑩, 𝑪𝟓,𝑴𝑩) are the MB estimators, then the Fast 

Consistence and Hgih breakdown (FCH) location and scale 

estimators can be obtained by 

 

where |∎| stands for the determinant of scale matrix while 

𝑴𝑫 is the traditional Mahalanobis Distance. 

 

𝑻𝑭𝑪𝑯 = {
𝑻𝟓,𝑫𝑮𝑲 𝒊𝒇√|𝑪𝟓,𝑫𝑮𝑲| < √|𝑪𝟓,𝑴𝑩|

𝑻𝟓,𝑴𝑩                           𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
}, 

and 

 𝑪𝑭𝑪𝑯

= 

{
 
 

 
 𝑴𝑬𝑫(𝑴𝑫𝒊

𝟐((𝑻𝟓,𝑫𝑮𝑲, 𝑪𝟓,𝑫𝑮𝑲)))

𝝌(𝒑,𝟎.𝟓)
𝟐 ×𝑪𝟓,𝑫𝑮𝑲, 𝒊𝒇√|𝑪𝟓,𝑫𝑮𝑲| < √|𝑪𝟓,𝑴𝑩|

𝑴𝑬𝑫(𝑴𝑫𝒊
𝟐((𝑻𝟓,𝑴𝑩, 𝑪𝟓,𝑴𝑩)))

𝝌(𝒑,𝟎.𝟓)
𝟐 × 𝑪𝟓,𝑴𝑩                          𝐎𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞 

  

}
 
 

 
 

, 

 

https://doi.org/10.22452/mjs.sp2022no1.4


 

25 
 

Special Issue Malaysian Journal of Science 

DOI: https://doi.org/10.22452/mjs.sp2022no1.4 

Malaysian Journal of Science 41 (Special Issue 1): 22-33 (September 2022) 

 

Let (�̂�𝟏, �̂�𝟏) be the traditional estimator applied to  𝒏𝟏 cases 

with 𝑴𝑫𝒊
𝟐[(  𝐓𝐅𝐂𝐇 , 𝐂𝐅𝐂𝐇) ] ≤ 𝝌(𝒑,𝟎.𝟗𝟕𝟓)

𝟐 , and let 𝒒𝟏 =

𝒎𝒊𝒏 {
(𝟎.𝟓×𝟎.𝟗𝟕𝟓×𝒏)

𝒏𝟏
, 𝟎. 𝟗𝟗𝟓} 

Thus, the first standard reweighting of MVN data is given by 

𝑪𝑹𝑴𝑽𝑵
(𝟏)

=
𝑴𝑬𝑫(𝑫𝒊

𝟐(𝑻𝑭𝑪𝑯 ,   𝑪𝑭𝑪𝑯))

𝝌(𝒑,𝒒𝟏)
𝟐 × 𝑪𝑭𝑪𝑯 . 

 

The new estimators  (𝑻𝑭𝑪𝑯 , 𝑪𝑹𝑴𝑽𝑵
(𝟏)

) are applied to 𝒏𝟐 case 

with  

𝑴𝑫𝒊
𝟐 [(  𝑻𝑭𝑪𝑯 , 𝑪𝑹𝑴𝑽𝑵

(𝟏)
) ] ≤ 𝝌(𝒑,𝟎.𝟗𝟕𝟓)

𝟐 . 

 

Let  𝒒𝟐 = 𝒎𝒊𝒏 {
(𝟎.𝟓×𝟎.𝟗𝟕𝟓×𝒏)

𝒏𝟐
, 𝟎. 𝟗𝟗𝟓}, then the RMVN 

estimator can be found as follows 

𝑪𝑹𝑴𝑽𝑵
(𝟐)

=
𝑴𝑬𝑫 (𝑫𝒊

𝟐 (𝑻𝑹𝑴𝑽𝑵 , 𝑪𝑹𝑴𝑽𝑵
(𝟏) ))

𝝌(𝒑,𝒒𝟐)
𝟐 × 𝑪𝑹𝑴𝑽𝑵

(𝟏)
. 

The algorithm of DRGP (RMVN) measure can be 

summarized as follows 

1. Computing the location 𝑻𝑹𝑴𝑽𝑵  and scale 𝑪𝑹𝑴𝑽𝑵
(𝟐)

 

estimators. 

2. Calculating Mahalanobis Distance (𝑴𝑫) using Eq. 

(2). If the 𝒊𝒕𝒉 𝑴𝑫𝒊(𝑹𝑴𝑽𝑵) > √𝝌(𝒑,𝟎.𝟗𝟓)
𝟐 , then the 

𝒊𝒕𝒉 row has the suspected observations as HLP, 

given by 

 

𝑴𝑫𝒊(𝑹𝑴𝑽𝑵) = 

 √(𝑿 − 𝑻𝑹𝑴𝑽𝑵(𝑿))
𝑪𝑹𝑴𝑽𝑵׳
(𝟐) −𝟏 ׳

(𝑿 − 𝑻𝑹𝑴𝑽𝑵(𝑿)) .   

 

3. The deletion of D rows from the matrix X of the 

original data where 

𝑫 = 𝑴𝑫{(𝑹𝑴𝑽𝑵) > √𝝌(𝒑,𝟎.𝟗𝟓)
𝟐 } 

is the row's index by placing the deletion rows in 𝑿𝑫 

matrix, while the remaining rows will be in 𝑿𝑹 

matrix.  

4. The last step is similar to step 4 in DRGP(MVE). 

 

3. Simulation Study 
 

Let's suppose the multiple linear regression be as follows: 

                          

𝒚 = 𝑿𝜷 +  𝒆,        (𝟐) 

 

where 𝑿 is  𝒏 × 𝒑 design matrix generated from a 

multivariate normal distribution with mean equals to zero 

and standard deviation equivalent to  𝛔 = 𝛒|𝐢−𝐣|, implying 

𝒙~𝑵(𝟎, 𝛒|𝐢−𝐣|). Here, 𝒑 = 𝟕, 𝒏 is the generated sample that 

will take a different number of observations, 𝒏 =

{𝟒𝟓, 𝟕𝟎, 𝟗𝟎, 𝟏𝟒𝟎}, 𝜷 is the identity vector of this model   

𝜷 = [
𝟏
⋮
𝟏
]

𝟕𝒙𝟏

,         (𝟑)  

 

and e is a random error term that is distributed generally 

with zero mean and two standard deviations. To make sure 

of the diagnosis efficient of comparative methods, we 

contaminate the simulated data with different proportions 

of outliers, 𝜶 = (𝟎. 𝟎𝟓, 𝟎. 𝟏𝟎)  as follows: 

 

1- Contaminating the design matrix of each sample by 𝜶 BLP 

in the presence of one HLP. By multiplying the first three 

rows of the second variable to the fifth variable by the 

number 10, multiplying the maximum value of the first 

variable by the number 10, and what corresponds to it in 

the response variable Y. 

 

2- Contaminating both design matrix and random errors α 

BLP & Vertical Outliers (VO) in the presence of one HLP. 

The VOs are generated from a chi-square distribution with 

(10) degree freedom. 

 

The main reason for including a single HLP in all cases of 

the simulation study is to consider the phenomenon of 

masking and swamping. Let 𝝀𝒊 be a random variable, where 

𝒊 = 𝟏, 𝟐,… , 𝒏,  𝑶 = {𝝀𝟏, … , 𝝀𝜹} be the outlying observations, 

such that  (𝜹 = 𝜶 × 𝒏), and 𝜶 is the percentage of outlying 

observations, respectively. The clean observations would be 

𝑪 = {𝝀𝜹+𝟏, … , 𝝀𝒏}. Suppose that 𝚬𝒋 is the total outlying cases 

detected by a specific diagnostic method, where 𝟏 ≤ 𝒋 ≤ 𝜹∗,  

𝜹∗ is then either (𝜹 + 𝒃) or (+𝒃), such that 𝒉  and 𝒃 are 

integer numbers, [𝟎 ≤ 𝒃 < 𝒏] and [𝟎 ≤ 𝒉 < 𝜹]. 

Consequently,  𝝀𝒃 ∈ 𝑪 and 𝝀𝒉 ∈ 𝑶 and we can conclude that 

the exact detection will happen when (𝜹∗ = 𝜹)  in which no 

swamping cases (𝒃 = 𝟎) nor masking issues (𝒉 = 𝟎) will 

occur. However, the particular method would have swapping 

cases where (𝜹∗ > 𝜹) and masking where (𝜹 < 𝜹 − 𝒉). The 

performance of our proposed method is compared with 

another overall (1000) dataset for each simulation case. The 

best diagnostic method is the one that has an average of 

correct diagnostic closer to 𝜹 (accurate), a lower standard of 

 𝒃 (swap). 

Tables 1,2 and 3  display the results of the Hat matrix, 

RMD, Hadi’s poteintial, DRGP.MVE and DRGP.RMVN when 

α={0.05,0.10,0.15 } for overall 5000 datasets are generated 

with two types of contamination and different samples size 

n={35,45,70,90,140}.  The average of of (𝚬 , correct and 

swap) which are the number of outlying cases (Leverage 

points) that identified by competiting methods, the correct 

number of outlying cases and the number of swamping 

cases, respectively. For instance, when (𝒏 = 𝟑𝟓,𝜶 = 𝟎. 𝟎𝟓), 

the generated dataset should be having two LP, and probably 

a high LP that is generated randomly be either good or bad. 

If it is good high LP almost should be one of two leverage 

points, otherwise, the total number of LP will be three. This 
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Table 1. Averages of the correct and swap diagnosis, respectively, for three cases of simulation when  𝛼 = 0.05  and different sample 

sizes.  

   Hat RMD Hadi DRGP(MVE) DRGP(RMVN) 

 
 
 
 
 
 

35 

 
LP 

Ε  11.4682 9.964 4.9952 4.2268 4.1232 

correct 2.9428 2.9428 2.9428 2.9428 2.9428 

swap 8.5254 7.0212 2.0524 1.284 1.1804 

 
LP & 
VO 

Ε  11.4436 9.9408 5.396 4.282 4.1192 

correct 2.943 2.943 2.943 2.943 2.943 

swap 8.5006 6.9978 2.453 1.339 1.1762 

 
 
 
 
 
 

45 

 
LP 

Ε  10.42 9.13 6.68 5.11 4.92 

correct 3.94 3.94 3.94 3.94 3.94 

swap 6.48 5.19 2.74 1.17 0.98 

 
LP & 
VO 

Ε  10.41 9.18 7.27 5.05 4.98 

correct 3.93 3.93 3.93 3.93 3.93 

swap 6.48 5.25 3.34 1.12 1.05 

 
 
 
 
 

70 

 
LP 

Ε  10.202 9.155 9.856 6.29 6.262 

correct 4.941 4.214 4.935 4.942 4.942 

swap 5.261 4.941 4.921 1.348 1.32 

 
LP & 
VO 

Ε  10.234 9.218 10.49 6.217 6.159 

correct 4.939 4.939 4.93 4.94 4.94 

swap 5.295 4.279 5.56 1.277 1.219 

 
 
 
 
 

90 

 
LP 

Ε  11.58 10.47 12.51 7.48 7.49 

correct 5.94 5.93 5.85 5.94 5.94 

swap 5.64 4.53 6.67 1.54 1.55 

 
LP & 
VO 

Ε  11.54 10.53 13.21 7.46 7.49 

correct 5.95 5.95 5.88 5.95 5.95 

swap 5.60 4.58 7.33 1.51 1.54 

 
 
 
 
 
 

140 

 
LP 

Ε  16.087 14.614 18.303 10.134 0.163 

correct 7.938 7.938 7.698 7.948 7.948 

swap 8.149 6.676 10.605 2.186 2.215 

 
LP & 
VO 

Ε  16.034 14.547 19.332 10.033 10.041 

correct 7.93 7.926 7.773 7.945 7.945 

swap 8.104 6.621 11.559 2.088 2.096 
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Table 2. Averages of the correct and swap diagnosis, respectively, for three cases of simulation when  𝛼 = 0.1  and different sample 

sizes.  

   Hat RMD Hadi DRGP(MVE) DRGP(RMVN) 

 
 
 
 
 
 

35 

 
LP 

Ε  7.83 7.193 6.646 5.811 5.623 

correct 4.865 4.865 4.838 4.865 4.865 

swap 2.965 2.328 1.808 0.946 0.758 

 
LP & 
VO 

Ε  7.771 7.166 7.24 5.719 5.648 

correct 4.884 4.883 4.853 4.886 4.886 

swap 2.887 2.283 2.387 0.833 0.762 

 
 
 
 
 
 

45 

 
LP 

Ε  8.837 8.208 7.945 6.683 6.547 

correct 5.878 5.874 5.553 5.895 5.895 

swap 2.959 2.334 2.392 0.788 0.652 

 
LP & 
VO 

Ε  8.857 8.172 8.911 6.682 6.606 

correct 5.87 5.868 5.627 5.886 5.886 

swap 2.987 2.304 3.284 0.796 0.72 

 
 
 
 
 

70 

 
LP 

Ε  11.9668 11.1538 10.96 8.7822 8.7544 

correct 7.8528 7.8432 6.9832 7.9048 7.9048 

swap 4.114 3.3106 3.9768 0.8774 0.8496 

 
LP & 
VO 

Ε  11.99 11.1872 12.515 8.746 8.7206 

correct 7.8606 7.8518 7.1938 7.907 7.907 

swap 4.1294 3.3354 5.3212 0.839 0.8136 

 
 
 
 
 

90 

 
LP 

Ε  14.9222 13.9716 13.5374 10.8636 10.8602 

correct 9.8176 9.8018 8.3428 9.9016 9.9016 

swap 5.1046 4.1698 5.1946 0.962 0.9586 

 
LP & 
VO 

Ε  14.9008 13.919 15.569 10.8842 10.8764 

correct 9.8174 9.7996 8.6946 9.8984 9.8984 

swap 5.0834 4.1194 6.8744 0.9858 0.978 

 
 
 
 
 
 

140 

 
LP 

Ε  22.3434 20.9508 19.8194 16.2092 16.2104 

correct 14.7168 14.6814 11.6562 14.8992 14.8992 

swap 7.6266 6.2694 8.1632 1.31 1.3112 

 
LP & 
VO 

Ε  22.3826 20.9838 19.8032 16.2218 16.23 

correct 14.7156 14.6826 11.6198 14.901 14.901 

swap 7.667 6.3012 8.1834 1.3208 1.329 
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Table 3. Averages of the correct and swap diagnosis, respectively, for three cases of simulation when  𝛼 = 0.15  and different sample 

sizes.  

   Hat RMD Hadi DRGP(MVE) DRGP(RMVN) 

 
 
 
 
 
 

35 

 
LP 

Ε  9.086 8.5024 6.6246 7.3208 7.2726 

correct 6.75 6.73 5.3072 6.832 6.832 

swap 2.336 1.7724 1.3174 0.4888 0.4406 

 
LP & 
VO 

Ε  9.1104 8.5514 7.2782 7.285 7.2544 

correct 6.7526 6.7288 5.4162 6.832 6.832 

swap 2.3578 1.8226 1.862 0.453 0.4224 

 
 
 
 
 
 

45 

 
LP 

Ε  10.4724 9.8478 7.8152 8.3042 8.2728 

correct 7.7378 7.713 5.9242 7.8452 7.8452 

swap 2.7346 2.1348 1.891 0.459 0.4276 

 
LP & 
VO 

Ε  10.497 9.8884 8.8176 8.339 8.2986 

correct 7.7394 7.7162 6.0872 7.8412 7.8412 

swap 2.7576 2.1722 2.7304 0.4978 0.4574 

 
 
 
 
 

70 

 
LP 

Ε  15.3946 14.5858 10.2204 12.3012 12.3036 

correct 11.5568 11.4976 7.2486 11.8536 11.8536 

swap 3.8378 3.0882 2.9718 0.450 0.450 

 
LP & 
VO 

Ε  15.3966 14.5954 12.2674 12.3214 12.3102 

correct 11.5374 11.4888 7.789 11.8376 11.8376 

swap 3.8592 3.1066 4.4784 0.4838 0.4726 

 
 
 
 
 

90 

 
LP 

Ε  19.1892 18.2664 12.2388 15.357 15.352 

correct 14.4146 14.3474 8.408 14.8388 14.8388 

swap 4.7746 3.919 3.8308 0.5182 0.5132 

 
LP & 
VO 

Ε  19.1708 18.2016 15.1412 15.3638 15.361 

correct 14.4296 14.353 9.2282 14.8454 14.8454 

swap 4.7412 3.8486 5.913 0.5184 0.5156 

 
 
 
 
 
 

140 

 
LP 

Ε  28.4406 27.054 17.7994 22.593 22.5958 

correct 21.19 21.0848 11.4674 21.851 21.851 

swap 7.2506 5.9692 6.332 0.742 0.7448 

 
LP & 
VO 

Ε  28.4262 27.0326 22.6872 22.5732 22.577 

correct 21.1834 21.0786 13.0092 21.8482 21.8482 

swap 7.2428 5.954 9.678 0.725 0.7288 
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procedure has been done for all simulation scenarios. Each 

table has the results of both diagnostics single detection and 

group diagnostic methods. Therefore, the discussion of 

results would be taken the performance of single diagnostic 

methods first and then  the dicussion the results of group 

diagnostic has been considered with some details. 

Tables 1,2 and 3  display the results of the Hat matrix, 

RMD, Hadi’s poteintial, DRGP.MVE and DRGP.RMVN when 

α={0.05,0.10,0.15 } for overall 5000 datasets are generated 

with two types of contamination and different samples size 

n={35,45,70,90,140}.  The average of of (𝚬 , correct and 

swap) which are the number of outlying cases (Leverage 

points) that identified by competiting methods, the correct 

number of outlying cases and the number of swamping 

cases, respectively. For instance, when (𝒏 = 𝟑𝟓,𝜶 = 𝟎. 𝟎𝟓), 

the generated dataset should be having two LP, and probably 

a high LP that is generated randomly be either good or bad. 

If it is good high LP almost should be one of two leverage 

points, otherwise, the total number of LP will be three. This 

procedure has been done for all simulation scenarios. Each 

table has the results of both diagnostics single detection and 

group diagnostic methods. Therefore, the discussion of 

results would be taken the performance of single diagnostic 

methods first and then  the dicussion the results of group 

diagnostic has been considered with some details. 

The results of single diagnostic methods (Hat,RMD, and 

Hadi) that presented in Table 1, Hadi's potential method has 

proved its ability accuracy diagnostic  than Hat matrix and 

RMD.  When (𝒏 = 𝟑𝟓, 𝟒𝟓) the average numbers of 𝜠 cases 

and swap of  Hadi's potential method are less than Hat,RMD 

methods.  In spite of that all the Ε cases  of single diagnostic 

methods are involved the correct number of outlying cases, 

but Hadi's potential method reduced the swamping cases to 

the minimum . his superiority  of Hadi's potential than other 

single diagnostic methods method has not held long.  The 

signs of broken have started of this method is to be clear 

when (𝒏 = 𝟕𝟎)  and there is vertical outliers and  leverage 

points were present togather in the data.  Table 1 has shown 

that RMD method is more accurate than Hadi's potential 

method when data are contaminated by LP & VO and (𝒏 =

𝟕𝟎, 𝟗𝟎, 𝟏𝟒𝟎)  or  in the presence of LP and  (𝒏 = 𝟗𝟎, 𝟏𝟒𝟎). 

We recorded that the single diagnostic methods may suffer 

from some masking cases particularly when the correct 

phases of it is more lower than their counterparts of group 

diagnostics. It is notable that Hadi's potential method started 

to be far from the correct cases gradually with the sample 

sizes are  increased.  The results that displays in Table 2 and 

3 confirmed the outperforming the method of RMD than 

Hadi's potential and Hat matrix methods when {𝒏 =

𝟒𝟓, 𝟕𝟎, 𝟗𝟎, 𝟏𝟒𝟎} and where the outliers is presence in 𝒏 =

𝟑𝟓 obsrvation. In another word,  the  Hadi's potential 

method are much influenced by masking cases than others 

as Table 2 and 3 are shown.   

The performance of both group diagnostics methods 

DRGP.MVE and DRGP.RMVN are displayed in the Tabel 1,2, 

and 3. It is obvious that when 0.05, 0.10  of LP or LP and 

outliers together are present in the dataset, the total number 

of outlying cases (which is called 𝜠 cases ) that diagnostic by 

DRGP.RMVN method is less than the 𝜠 cases of DRGP.MVE 

when (𝒏 = 𝟑𝟓, 𝟒𝟓). However, Table 1 shows that 𝜠 cases of 

five compared methods are 11.4682, 9.964, 4.995, 4,2268, 

and 4.1232, respectively. The closest number to (3) is  4.1232 

which is determined by  DRGP.RMVN method as the average 

of LP’s that identified for overall 5000 iterations. The second 

method is DRGP.MVE which is detected 4.2268 LP’s and 

Hadi’s potential diagnosed 4.995. The Hat matrix and RMD 

methods are determined 11.4682 and 9.964 LP’s, 

respectively. The good thing is that the Ε cases of all methods 

have been selected with the same number  (2.9428) for the 

correct cases, but subtracting this number from the Ε cases 

of each method result-in the swamping cases.  

Surely, the less number of (swap) will be the criterion for 

choosing the best method. Definitely, the results of Table 1 

present that DRGP.RMVN is having a lower number of swap 

(1.1804) than others.  in spite, of the swap of DRGP.MVE is 

very close to DRGP.RMVN, but the last method reduced the 

percentage of swap to 10%. The performance of all methods 

has been not changed in the second scenario of simulation ( 

in the presence of five percent of outliers and leverage in the 

data) and outperforms DRGP.RMVN  than DRGP.MVN and 

single detection methods even  𝒏 = 𝟕𝟎 by two kinds from 

simulation scenarios are used. The DRGP.MVE method has 

proved its ability to compete with DRGP.RMVN method at 

(n=90,140) as Table 1 has been shown. That is Due to the 

values of the averages swamping DRGP.MVE is less than 

others.   

 The superior performance of DRGP.RMVN method has 

held even with increasing the sample size to (45,70) and the 

percentage of outlying observations increased to 10%  as 

table 2 is showed that too. The performance of DRGP.MVE 

begins to get better than DRGP.RMVN when (𝒏 = 𝟗𝟎), (𝜶 =

𝟎. 𝟎𝟓), but when 𝒏 = 𝟗𝟎 with increasing 𝜶 to 𝟎. 𝟏𝟎 

DRGP.RMVN kept its high performance compared with other 

methods. Where (𝒏 = 𝟏𝟒𝟎), and (𝜶 = 𝟎. 𝟎𝟓, 𝟎. 𝟏𝟎) the 

DRGP.MVE shows its ability to identfy the LP's  than others. 

But the outcomes of Table 3 confirmed the high diagnostics 

acuuracy of DRGP.RMVN than DRGP.MVE even though 

sometimes the performance of both methods are 

equavelant.  

 

3.1 The Market value of Banks Iraq’s Stock Market   

 

The researchers collected these data out of the official 

website of the Iraqi Stock Markit after using the (SX60) 

system, where the annual data for market value were 

collected for nine of the local banks.  These banks were 

chosen due to it the most traded than others for the period 

(2011-2015).  The 45 samples are contained eight variables 

and they are (Trading Rate 𝒙𝟏,  Earning per share (EPS) 𝒙𝟐, 

share turn over ratio 𝒙𝟑, Annual Average price 𝒙𝟒, the Assets 
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𝒙𝟓, Undistributed earnings𝒙𝟔, Annual Net Profit (Revenue) 

𝒙𝟕, and market value 𝒚).  We are considered seven out of 

those variables explain and show the size of the market value 

according to the multiple linear regression model that can be 

described as follows:    

       

𝒚 =  𝜷° + 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 + 𝜷𝟑𝒙𝟑 + 𝜷𝟒𝒙𝟒 + 

𝜷𝟓𝒙𝟓 + 𝜷𝟔𝒙𝟔 + 𝜷𝟕𝒙𝟕       (4) 

 

Figure 1 shows that the distribution of the residuals of 

model (4) is not follow normal distribution. It is clear, in the 

Q-Q plot, the fitted value vs residuals and scale location 

appear the resfigureiduals which are indexed in 25, 29,and 

30 are outliers. The plot of residuals vs leverage points 

recorded some leverage points the indentified by Cook's 

distance measure.  

Table 4 explains the accuracy of the correct diagnostic 

and the incorrect diagnostic (swamping & masking) for (Hadi, 

MD, Hat) methods compared with DRGP.MVE and 

DRGP.RMVN methods. Moreover, the DRGP.MVE and 

DRGP.RMVN are compared to each other.  

Based on the simulation results DRGP.MVE and 

DRGP.RMVN methods are high efficiency and more 

accuarate than single diagnostic method to detect the 

leverage points. So, we consider it as criterion to identifying 

the correct and non-correct diagnostic. There is (45) samples 

of Banks market values probably motivate us to expect that 

DRGP.RMVN is more stable and accuracy diagnostics than 

DRGP.MVE. That is due to the simulation result shows the 

high performance of DRGP.RMVN with the small samples. 

The DRGP.MVE and DRGP.RMVN are determined (10) and (9) 

samples which are (1,  6,  7, 16, 23, 33, 34, 35, 36, 40) and (1,  

6,  7, 13, 16, 33, 34, 35, 40)  having LP’s, respectively.  

The Hat matrix identifies (18) samples which are (12, 

13,14,16, 18, 23, 24, 25, 27, 31, 32, 33, 34, 35, 37, 38, 39, 40) 

are having LP’s. The comparison of Hat matrix result with 

DRGP.MVE method, we noted that both methods are only 

matched to identify (6) samples that poses correct leverage 

points which are (16, 23, 33, 34, 35,40), while (12) samples 

 

 

Figure 1. Initial diagnostics of outliers and leverage points for bank market value data 
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are considered leverage points by Hat matrix, but are not 

detected by DRGP.MVE. So, this wrong diagnostics is pointed 

as swamping cases. On the other hand, the DRGP.MVE 

recorded (1,6,7,36) samples involved leverage points that 

are not detected by Hat matrix, therefore, we considered 

these as masking cases in Hat matrix. The comparison of Hat 

matrix with DRGP.RMVN method has not differ a lot, just it is 

reduced the masking cases to (3). 

The MD method has reduced the total detection of 

leverage points from (18) case with Hat matrix to (13) case 

which are (1,  6,  7, 11, 13, 16, 23, 32, 33, 34, 35, 36, 40). This 

procedure is already would reduce the swamping cases to (3) 

and (4) compared with DRGP.MVE and DRGP.RMVN, 

respectively. So, the correct diagnostic of MD method 

matches with the correct diagnostics of DRGP.MVE and 

DRGP.RMVN without any masking cases. Unfortunately, 

Hadi’s potaintial method detect (8) LP”s that are noted in (24, 

25, 29, 30, 31, 34, 35, 40) samples, but only (3) samples are 

matched with DRGP.MVE and DRGP.RMVN methods {34, 35, 

40} and other are swamping cases. Due to the difference in 

total detection of leverage points between DRGP.MVE and 

DRGP.RMVN methods are only one case, therefore the 

masking cases of Hadi’s potential method are (7) and (6) 

compared with both of the previous methods, see Table ( ).  

However, DRGP.RMVN method has found that (9) samples 

are contained leverage points without any swamping and 

masking cases.  This outcome is compatible with the 

simulation scenario where 𝒏 = 𝟒𝟓. 

Figure 2 contains (6) subgraphs, each graph shows the 

behavior of a certain diagnostic method against the 

standardized residuals measure. The vertical line represents 

the cutoff point of that diagnostic method, while the 

horizontal line represents the threshold of standardized 

residuals which equals 3 in this paper.  It is obvious, that the 

developments that have happened in the detection methods 

of leverage points have reduced the swamping cases. The 

first subgraph of the Hat matrix method confirms that there 

are (18) leverage points and the second subgraph of MD 

displayed only (2) swamping cases. The third subgraph of 

RMD presents the high performance of RMD vs MD and has 

reduced the swamping cases better than Hat matrix method. 

Figure 2 contains (6) subgraphs, each graph shows the 

behavior of a certain diagnostic method against the 

standardized residuals measure. The vertical line represents 

the cutoff point of that diagnostic method, while the 

horizontal line represents the threshold of standardized 

residuals which equals 3 in this paper.  It is obvious, that the 

developments that have happened in the detection methods 

of leverage points have reduced the swamping cases. The 

first subgraph of the Hat matrix method confirms that there 

are (18) leverage points and the second subgraph of MD 

displayed only (2) swamping cases. The third subgraph of 

RMD presents the high performance of RMD vs. MD and has 

reduced the swamping cases better than the Hat matrix 

method. Hadi's potential method displayed in the subgraph 

fourth could not deal with these specific cases, therefore, we 

noted that it identified some cases that are not detected by 

other methods. Finally, the fifth and sixth subgraphs have 

related to DRGP.MVE and DRGP.RMVN methods and due to 

their asymptotic performances to each other, both graphs 

seem to be similar, but in reality, are a little bit different.   

 

3.2 The Results  

 

This research viewed some individual and group 

diagnostic methods to detect the outliers in the multivariable 

matrix using (Hadi Potential, RMD, Hat Matrix). However, 

these methods showed uneven efficiency in diagnostic 

accuracy, especially with the presence of the two 

phenomena of swamping and masking. These shortcomings 

led to the development of group diagnostic by some 

researchers like the DRGP.MVE method that relies on a 

robust variance and covariance matrix (MVE). Unfortunately, 

MVE is suffering from swamping cases, particularly with 

small samples. This reason led us to substitute the MVE 

matrix with another one called (RMVN) and proposed a new 

method called DRGP(RMVN). The efficiency of our proposed 

Table 4. Diagnostic Masking, Swamping and Correct to Hadi, MD, Hat methods in comparison with DRGP(RMVN) and DRGP(MVE) 

methods in terms of market value data. 

 
Measure  

 
Total 

DRGP.MVE DRGP.RMVN 

Swamping Correct Masking Swamping Correct Masking 

Hat  18 12 6 4 12 6 3 

MD 13 3 10 0 4 9 0 

Hadi 8 5 3 7 1 3 6 

DRGP.MVE 10  0 2 8 1 

DRGP.RMVN 9    
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method has been tested with the previous techniques by 

subjecting it to many simulation studies using different sizes'  

samples and contaminating's different percentages of LP and   

(LP & VO).  This is in addition to testing its efficiency on actual 

finance data.  We can conclude from the simulation 

outcomes that our suggested method proved consistency 

and stability in the accuracy of diagnostic and the reduction 

of the average of the incorrect diagnostic that the previous 

techniques suffered from when the sizes of the samples were 

35,45, and 70. 

Furthermore, we noticed an enormous closeness in the 

correct diagnosis for LP’s between our suggested method 

and the DRGP.MVE approach. Yet, the final form showed 

suffering in the problem of masking and swamping.  That led 

to outperforming our proposed method among all the 

methods competing within limits, for example, the small 

sizes of the samples and the different rates of contamination. 

Thus, we recommend that the practitioners of statistics and 

researchers in this field use our suggested method to 

diagnose multivariate outliers apparent in multiple linear 

regression data.   
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DEGREE SUM ENERGY OF NON-COMMUTING GRAPH FOR DIHEDRAL GROUPS  
Mamika Ujianita Romdhini1ac, Athirah Nawawi2ab* 
 

 

Abstract: For a finite group 𝐺, let 𝑍(𝐺) be the centre of 𝐺. Then the non-commuting graph on 𝐺, denoted by 𝛤𝐺 , has 𝐺\𝑍(𝐺) as its 

vertex set with two distinct vertices 𝑣𝑝 and 𝑣𝑞 joined by an edge whenever 𝑣𝑝𝑣𝑞 ≠ 𝑣𝑞𝑣𝑝. The degree sum matrix of a graph is a square 

matrix whose (𝑝, 𝑞)-th entry is 𝑑𝑣𝑝
+ 𝑑𝑣𝑞

 whenever 𝑝 is different from 𝑞, otherwise, it is zero, where 𝑑𝑣𝑖  is the degree of the vertex 𝑣𝑖. 

This study presents the general formula for the degree sum energy, 𝐸𝐷𝑆( 𝛤𝐺), for the non-commuting graph of dihedral groups of order 

2𝑛, 𝐷2𝑛, for all 𝑛 ≥ 3. 

 

Keywords: Non-commuting graph, dihedral group, degree sum matrix, the energy of a graph. 

 
1. Introduction 
 

The non-commuting graph on 𝑮, denoted by 𝜞𝑮, has 

𝑮\𝒁(𝑮) as its vertex set with two distinct vertices 𝒗𝒑 and 𝒗𝒒 

joined by an edge whenever 𝒗𝒑𝒗𝒒 ≠ 𝒗𝒒𝒗𝒑 (Abdollahi, 2006). 

In that sense, the non-commuting graph on 𝑮, 𝜞𝑮 can further 

be associated with the adjacency matrix. The 𝒏 × 𝒏 

adjacency matrix 𝑨(𝜞𝑮) = [𝒂𝒊𝒋] of 𝜞𝑮 has entries 𝒂𝒊𝒋 = 𝟏 if 

there is an edge between 𝒗𝒊 to 𝒗𝒋, and 𝒂𝒊𝒋 = 𝟎 otherwise. 

Since 𝜞𝑮 is a simple graph, then 𝑨(𝜞𝑮) is a symmetric matrix 

with zero diagonal entries. For a real number 𝝀, the 

characteristic polynomial 𝑷𝑨(𝜞𝑮)(𝝀) of 𝜞𝑮 is defined by 

𝐝𝐞𝐭 (𝝀𝑰𝒏 − 𝑨(𝜞𝑮)), where 𝑰𝒏 is an 𝒏 × 𝒏 identity matrix. 

The eigenvalues of 𝜞𝑮 are the roots of the equation 

𝑷𝑨(𝜞𝑮)(𝝀) = 𝟎, and they are labelled as 𝝀𝟏, 𝝀𝟐, … , 𝝀𝒏. The 

spectrum of 𝜞𝑮 is given as a list of eigenvalues 𝝀𝟏, 𝝀𝟐, … , 𝝀𝒎, 

with their respective multiplicities 𝒌𝟏, 𝒌𝟐, … , 𝒌𝒎  as 

exponents, denoted by 𝑺𝒑𝒆𝒄(𝜞𝑮) = {𝝀𝟏
(𝒌𝟏)

, 𝝀𝟐
(𝒌𝟐)

, … , 𝝀𝒎
(𝒌𝒎)

}. 

Furthermore, for all finite graphs, Gutman (1978) defined the 

energy of 𝜞𝑮 as the sum of the absolute values of the 

eigenvalues, denoted by 𝑬(𝜞𝑮) = ∑ |𝝀𝒊|
𝒏
𝒊=𝟏 . 

There are several interesting studies regarding the non-

commuting graph involving the spectrum and energy of its 

adjacency matrix. Mahmoud et al. (2017) described the 

adjacency energy of the non-commuting graph for dihedral 

groups of order 𝟐𝒏. In the same year, Dutta and Nath (2017) 

computed the Laplacian energy of the non-commuting graph 

for finite non-abelian groups, including the dihedral groups 

of order 𝟐𝒏. Alternatively, Fasfous and Nath (2020) 

computed the spectrum and energy of the non-commuting 

graph for certain classes of finite groups inclusive of 𝑫𝟐𝒏. 

They found that the adjacency energy of the non-commuting 

graph is not equal to the Laplacian energy for some finite 

groups. This refutes the conjecture by Gutman et al. in 2008, 

stating that the adjacency energy of any graph is smaller than 

or equal to its Laplacian energy, which holds for all graphs. 

However, readers can also see different perspectives of this 

particular graph where the discussion on the detour index, 

eccentric connectivity, total eccentricity polynomials, and 

mean distance of the non-commuting graph for the dihedral 

group by Khasraw et al. (2020).  

Throughout this paper, the discussion will be directed to 

the degree sum energy defined by Ramane et al. (2013). In 

particular, Jog and Kotambari (2016) presented the degree 

sum energy of six types of simple graphs, namely, Wheel 

graphs, Path Tadpole graphs, Dumbbell graphs, coalescence 

regular graphs, complete graphs, and cycles. Apart from that, 

Hosamani and Ramane (2016) also discussed the degree sum 

energy focusing on determining the lower bounds of degree 

sum energy of simple graphs. However, a limited number of 

studies central to the degree sum matrices for non-

commuting graphs have been found. Therefore, we aim to 

formulate the degree sum energy of the non-commuting 

graph for the dihedral groups.  

For 𝒏 ≥ 𝟑, the non-abelian dihedral group 𝑫𝟐𝒏 of order 

𝟐𝒏 is defined as the reflection and rotation motions that 

return a regular 𝒏-gon to its original state, with the 

composition operation denoted by 𝑫𝟐𝒏. The 𝒏 rotations are 
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𝒂𝒊 and the reflections are 𝒂𝒊𝒃, where 𝟏 ≤ 𝒊 ≤ 𝒏. Therefore, 

𝑫𝟐𝒏 can be written as: 

𝑫𝟐𝒏 = 〈𝒂, 𝒃 ∶  𝒂𝒏 = 𝒃𝟐 = 𝒆, 𝒃𝒂𝒃 = 𝒂−𝟏〉. 

The centre of 𝑫𝟐𝒏, 𝒁(𝑫𝟐𝒏) is equal to {𝒆} 𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝 and 

{𝒆, 𝒂
𝒏
𝟐} 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧. The centralizer of the element 𝒂𝒊 in the 

group 𝑫𝟐𝒏 is 𝑪𝑫𝟐𝒏 (𝒂
𝒊) = {𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝒏 }  and for the 

element 𝒂𝒊𝒃 is either 𝑪𝑫𝟐𝒏
(𝒂𝒊𝒃) = {𝒆, 𝒂𝒊𝒃} , 𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝, or 

𝑪𝑫𝟐𝒏
(𝒂𝒊𝒃) = {𝒆, 𝒂

𝒏
𝟐, 𝒂𝒊𝒃, 𝒂

𝒏
𝟐+𝒊𝒃}, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧.  

 

2. Preliminaries   
   

We define 𝒅𝒗𝒑
 as the degree of a vertex 𝒗𝒑, which is the 

number of vertices adjacent to 𝒗𝒑. The definition of the 

degree sum matrix is given as follows: 

 

Definition 2.1. (Ramane et al., 2013) The degree sum matrix 

of order 𝒏 × 𝒏 associated with a graph 𝜞 is given by 𝑫𝑺(𝜞) =

[𝒅𝒔𝒑𝒒]  whose (𝒑, 𝒒)-th entry is given by 

 

𝑑𝑠𝑝𝑞 = {
𝑑𝑣𝑝

+ 𝑑𝑣𝑞
,    if 𝑝 ≠ 𝑞

0,                   if 𝑝 = 𝑞
 

    

In this section, we include some previous results, which 

benefit the computations of our main results. Recall that, for 

any 𝒏 ≥ 𝟑, 𝑫𝟐𝒏 = 〈𝒂, 𝒃 ∶  𝒂𝒏 = 𝒃𝟐 = 𝒆, 𝒃𝒂𝒃 = 𝒂−𝟏〉. We 

define 𝑮𝟏 = {𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝒏}\𝒁(𝑫𝟐𝒏) and 𝑮𝟐 = {𝒂𝒊𝒃: 𝟏 ≤

𝒊 ≤ 𝒏}. The following is the result of the degree of each 

vertex in the non-commuting graph of 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐. 

 

Theorem 2.1: (Khasraw et al., 2020) Let 𝜞𝑮 be the non-

commuting graph on 𝑮, where 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐. Then, 

 

1. 𝑑𝑎𝑖 = 𝑛, and 

2. 𝑑𝑎𝑖𝑏 = {
2𝑛 − 2, if 𝑛 is odd
2𝑛 − 4, if 𝑛 is even

. 

 

A graph which has 𝒏 vertices with the degree of every vertex 

being 𝒏 − 𝟏 is called a complete graph 𝑲𝒏. Moreover, the 

complement of the complete graph 𝑲𝒏 is written as �̅�𝒏. 

Consequently, the isomorphism of the non-commuting 

graph with some common types of graphs can be seen in the 

following result: 

 

Theorem 2.2: (Khasraw et al., 2020) Let 𝜞𝑮 be the non-

commuting graph on 𝑫𝟐𝒏. 

 

1. If  𝑮 = 𝑮𝟏, then 𝜞𝑮 ≅ �̅�𝒎, where 𝒎 = |𝑮𝟏|. 

       2. If  𝑮 = 𝑮𝟐, then 𝜞𝑮 ≅ {
𝑲𝒏 ,               𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝

𝑲𝒏 −
𝒏

𝟐
𝑲𝟐, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧

, 

 

where 
𝒏

𝟐
𝑲𝟐  denotes 

𝒏

𝟐
 copies of 𝑲𝟐. 

The following lemma helps us to compute the 

characteristic polynomial of the non-commuting graph of 

𝑫𝟐𝒏. 

 

Lemma 2.1: (Ramane & Shinde, 2017) If 𝒂, 𝒃, 𝒄 and 𝒅 are real 

numbers and 𝑱𝒏 is an 𝒏 × 𝒏 matrix whose entries are equal 

to one, then the determinant of the (𝒏𝟏 + 𝒏𝟐) × (𝒏𝟏 + 𝒏𝟐) 

matrix of the form 

 

|
(𝝀 + 𝒂)𝑰𝒏𝟏

− 𝒂𝑱𝒏𝟏
−𝒄𝑱𝒏𝟏×𝒏𝟐

−𝒅𝑱𝒏𝟐×𝒏𝟏
(𝝀 + 𝒃)𝑰𝒏𝟐

− 𝒃𝑱𝒏𝟐

|, 

 

can be simplified in an expression given by 

(𝝀 + 𝒂)𝒏𝟏−𝟏(𝝀 + 𝒃)𝒏𝟐−𝟏((𝝀 − (𝒏𝟏 − 𝟏)𝒂)(𝝀 − (𝒏𝟐 −

𝟏)𝒃) − 𝒏𝟏𝒏𝟐𝒄𝒅), 

where 𝟏 ≤ 𝒏𝟏, 𝒏𝟐 ≤ 𝒏 and 𝒏𝟏 + 𝒏𝟐 = 𝒏. 

 

The following lemma is the result of the spectrum of the 

complete graph, which is useful for computing the energy of 

the non-commuting graph for 𝑫𝟐𝒏. 

 

Lemma 2.2: (Brouwer & Haemers, 2010) If 𝑲𝒏 is the 

complete graph on 𝒏 vertices, then its adjacency matrix is 

𝑱𝒏 − 𝑰𝒏 and the spectrum of 𝑲𝒏 is {(𝒏 − 𝟏)(𝟏), (−𝟏)(𝒏−𝟏)}. 

 

3. Main Results 
 

This section presents several results on the degree sum 

energy of the non-commuting graph on the dihedral group 

of order 𝟐𝒏, 𝑫𝟐𝒏.  

 

Theorem 3.1. Let 𝜞𝑮 be the non-commuting graph on 𝑮 and 

𝑬𝑫𝑺 be the degree sum energy of 𝜞𝑮. 

1. If 𝑮 = 𝑮𝟏, then 𝑬𝑫𝑺(𝜞𝑮) = 𝟎. 

2. If 𝑮 = 𝑮𝟐, then 

𝑬𝑫𝑺(𝜞𝑮) = {
𝟒(𝒏 − 𝟏)𝟐 ,                𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝

𝟒(𝒏 − 𝟐)(𝒏 − 𝟏),    𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧
. 

 

Proof. 

1. When 𝒏 is odd. From Theorem 2.2 (1),  𝜞𝑮 = �̅�𝒎, where 

𝑮 = 𝑮𝟏 and 𝒎 = |𝑮𝟏| = 𝒏 − 𝟏. Then, every vertex of 𝜞𝑮 

has degree zero. Thus, the degree sum matrix of 𝜞𝑮 is an 

(𝒏 − 𝟏) × (𝒏 − 𝟏) zero matrix, 𝑫𝑺(𝜞𝑮) = [𝟎]. The only 

eigenvalue of 𝑫𝑺(𝜞𝑮) is zero with multiplicity 𝒏 − 𝟏. 

Thus, 𝑬𝑫𝑺(𝜞𝑮) = 𝟎. 

 

When 𝒏 is even. From Theorem 2.2 (1),  𝜞𝑮 = �̅�𝒎, where 

𝑮 = 𝑮𝟏 and 𝒎 = |𝑮𝟏| = 𝒏 − 𝟐, removing 𝒆 and 𝒂
𝒏
𝟐 in 

𝒁(𝑫𝟐𝒏). Then, every vertex of 𝜞𝑮 has degree zero. 

Hence, the degree sum matrix of 𝜞𝑮 is an (𝒏 − 𝟐) × (𝒏 −

𝟐) zero matrix, 𝑫𝑺(𝜞𝑮) = [𝟎]. The only eigenvalue of 

𝑫𝑺(𝜞𝑮) is zero with multiplicity 𝒏 − 𝟐. Thus, 𝑬𝑫𝑺(𝜞𝑮) =

𝟎. 
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2. When 𝒏 is odd. From Theorem 2.2 (2),  𝜞𝑮 = 𝑲𝒏, where 

𝑮 = 𝑮𝟐. Then, every vertex has a degree 𝒏 − 𝟏. Thus, the 

degree sum matrix of 𝜞𝑮 is an 𝒏 × 𝒏 matrix, 𝑫𝑺(𝜞𝑮) =

[𝒅𝒔𝒑𝒒] whose (𝒑, 𝒒)-th entry is 𝒅𝒔𝒑𝒒 = (𝒏 − 𝟏) + (𝒏 −

𝟏) = 𝟐(𝒏 − 𝟏) for 𝒑 ≠ 𝒒, and 0 otherwise. Hence,  

In other words, the degree sum matrix of 𝜞𝑮 is the 

product of 𝟐(𝒏 − 𝟏) and the adjacency matrix of 𝑲𝒏. 

Based on Lemma 2.2, 𝑺𝒑𝒆𝒄(𝑲𝒏) is given by {(𝒏 −

𝟏)(𝟏), (−𝟏)(𝒏−𝟏)}. Since the adjacency energy of 𝑲𝒏 is 

|𝒏 − 𝟏| + (𝒏 − 𝟏)|−𝟏| = 𝟐(𝒏 − 𝟏), the degree sum 

energy of 𝜞𝑮 will be 𝟐(𝒏 − 𝟏) ∙ 𝟐(𝒏 − 𝟏) = 𝟒(𝒏 − 𝟏)𝟐.  

 

When 𝒏 is even. From Theorem 2.2 (2), 𝜞𝑮 = 𝑲𝒏 −
𝒏

𝟐
𝑲𝟐, 

where 𝑮 = 𝑮𝟐. Then, every vertex has a degree of 𝒏 − 𝟐. 

We can now construct an 𝒏 × 𝒏 degree sum matrix of 𝜞𝑮, 

𝑫𝑺(𝜞𝑮) = [𝒅𝒔𝒑𝒒] whose (𝒑, 𝒒)-th entry is 𝒅𝒔𝒑𝒒 = 𝒏 −

𝟐 + 𝒏 − 𝟐 = 𝟐(𝒏 − 𝟐) for 𝒑 ≠ 𝒒, and 0 otherwise. 

Hence, 

 

In other words, the degree sum matrix of 𝜞𝑮 is the 

product of 𝟐(𝒏 − 𝟐) and the adjacency matrix of 𝑲𝒏. 

Using the same argument as in the previous case, the 

degree sum energy of 𝜞𝑮 is given by 𝟐(𝒏 − 𝟐) ∙

𝟐(𝒏 − 𝟏) = 𝟒(𝒏 − 𝟐)(𝒏 − 𝟏). 

 

The illustration of Theorem 3.1 is given by the following 

examples for 𝒏 = 𝟒 and 𝒏 = 𝟓. 

Example 1. Let 𝜞𝑮 be the non-commuting graph on 𝑮, where 

𝑮 ⊂ 𝑫𝟖, 𝑫𝟖 = {𝒆, 𝒂,  𝒂𝟐,  𝒂𝟑, 𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃}, 𝒁(𝑫𝟖) =

{𝒆, 𝒂𝟐}, 𝑮𝟏 = {𝒂, 𝒂𝟑}, 𝑮𝟐 = {𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃}, 𝑪𝑫𝟐𝒏 (𝒃) =

{𝒆,  𝒂𝟐, 𝒃,  𝒂𝟐𝒃} = 𝑪𝑫𝟐𝒏 (𝒂
𝟐𝒃), 𝑪𝑫𝟐𝒏 (𝒂𝒃) =

{𝒆,  𝒂𝟐, 𝒂𝒃,  𝒂𝟑𝒃} = 𝑪𝟐𝒏 (𝒂
𝟑𝒃). By using the information on 

the centralizer of each element in 𝑮, then the non-

commuting graph of 𝑮 is given as in Figure 1.  

When 𝑮 = 𝑮𝟏 from Figure 1 (i), it is clear that we only have 

two vertices 𝒂 and 𝒂𝟑 and the degree of each vertex is zero. 

Then, the non-commuting graph of 𝑮𝟏 is the complement of 

the complete graph on two vertices, �̅�𝟐. This implies that we 

have a 𝟐 × 𝟐 degree sum matrix of 𝜞𝑮 with all the entries are 

zero, 𝑫𝑺(𝜞𝑮) = [
𝟎 𝟎
𝟎 𝟎

]. Furthermore, the characteristic 

polynomial of 𝑫𝑺(𝜞𝑮) is 𝑷𝑫𝑺(𝜞𝑮)(𝝀) = 𝐝𝐞𝐭(𝝀𝑰𝟐 −

𝑫𝑺(𝜞𝑮)) =𝝀𝟐. It follows that the eigenvalues of 𝑫𝑺(𝜞𝑮) is 

zero with multiplicity 𝟐.  Therefore, the degree sum energy 

of 𝜞𝑮 is 𝑬𝑫𝑺(𝜞𝑮) = 𝟎. 

However, if 𝑮 = 𝑮𝟐, then each vertex 𝒂𝒊𝒃, where 𝟏 ≤ 𝒊 ≤

𝟒, is of degree two, as shown in Figure 1 (ii). Then, the non-

commuting graph of 𝑮𝟐 on four vertices is 𝑲𝟒 − 𝟐𝑲𝟐. This 

means that we have a 𝟒 × 𝟒 degree sum matrix of 𝜞𝑮 with 

the non-diagonal entries are 𝟐 + 𝟐 = 𝟒, while the diagonal 

entries are zero. Then, we obtain 

𝑫𝑺(𝜞𝑮) = [

𝟎 𝟒 𝟒 𝟒
𝟒 𝟎 𝟒 𝟒
𝟒 𝟒 𝟎 𝟒
𝟒 𝟒 𝟒 𝟎

] 

. 

Furthermore, the characteristic polynomial of 𝑫𝑺(𝜞𝑮) is 

𝑷𝑫𝑺(𝜞𝑮)(𝝀) = 𝐝𝐞𝐭(𝝀𝑰𝟒 − 𝑫𝑺(𝜞𝑮)) = (𝝀 + 𝟒)𝟑(𝝀 − 𝟏𝟐). 

This implies that the eigenvalues of 𝑫𝑺(𝜞𝑮) are a single 𝝀 =

𝟏𝟐 and 𝝀 = −𝟒 with multiplicity 3. Therefore, 𝑬𝑫𝑺(𝜞𝑮) =

|𝟏𝟐| + 𝟑|−𝟒| = 𝟐𝟒 = 𝟒(𝟒 − 𝟐)(𝟒 − 𝟏). 

 

𝑫𝑺(𝜞𝑮) = [

𝟎 𝟐(𝒏 − 𝟏) ⋯ 𝟐(𝒏 − 𝟏)

𝟐(𝒏 − 𝟏) 𝟎 ⋯ 𝟐(𝒏 − 𝟏)
⋮ ⋮ ⋱ ⋮

𝟐(𝒏 − 𝟏) 𝟐(𝒏 − 𝟏) ⋯ 𝟎

] 

= 𝟐(𝒏 − 𝟏) [

𝟎 𝟏 ⋯ 𝟏
𝟏 𝟎 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟎

] 

. 

 

𝑫𝑺(𝜞𝑮) = [

𝟎 𝟐(𝒏 − 𝟐) ⋯ 𝟐(𝒏 − 𝟐)

𝟐(𝒏 − 𝟐) 𝟎 ⋯ 𝟐(𝒏 − 𝟐)
⋮ ⋮ ⋱ ⋮

𝟐(𝒏 − 𝟐) 𝟐(𝒏 − 𝟐) ⋯ 𝟎

] 

= 𝟐(𝒏 − 𝟐) [

𝟎 𝟏 ⋯ 𝟏
𝟏 𝟎 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟎

]. 

 
Figure 1. Non-commuting graph of 𝑮, where (i) 𝑮 = 𝑮𝟏 and (ii) 𝑮 = 𝑮𝟐. 

 

https://doi.org/10.22452/mjs.sp2022no.1.5


 

37 
 

Special Issue Malaysian Journal of Science 

DOI: https://doi.org/10.22452/mjs.sp2022no.1.5 

Malaysian Journal of Science 41 (Special Issue 1): 34-39 (September 2022) 

Example 2. Let 𝜞𝑮 be the commuting graph on 𝑮, where 𝑮 ⊂

𝑫𝟏𝟎, 𝑫𝟏𝟎 = {𝒆, 𝒂,  𝒂𝟐,  𝒂𝟑,  𝒂𝟒 𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃,  𝒂𝟒𝒃}, 

𝒁(𝑫𝟏𝟎) = {𝒆}, 𝑮𝟏 = {𝒂, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒}, 𝑮𝟐 = { 𝒃,

𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃,  𝒂𝟒𝒃}, 𝑪𝑫𝟐𝒏 (𝒂
𝒊𝒃) = {𝒆, 𝒂𝒊𝒃}, and 

𝑪𝑫𝟐𝒏 (𝒂
𝒊) = {𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝒏}. Using the information on the 

centralizer of each element in 𝑮, the non-commuting graph 

of 𝑮 is given in Figure 2. When 𝑮 = 𝑮𝟏, from Figure 2 (i), it is 

clear that we have four vertices 𝒂𝒊, for  𝟏 ≤ 𝒊 ≤ 𝟒, and the 

degree of each vertex is zero. Then the non-commuting 

graph of 𝑮𝟏 is the complement of the complete graph on four 

vertices, �̅�𝟒. This implies that we have a 𝟒 × 𝟒 degree sum 

matrix of 𝜞𝑮 with all the entries are zero, 𝑫𝑺(𝜞𝑮) = [𝟎]. 

Furthermore, the characteristic polynomial of 𝑫𝑺(𝜞𝑮) is 

𝑷𝑫𝑬𝑺(𝜞𝑮)(𝝀) = 𝐝𝐞𝐭(𝝀𝑰𝟒 − 𝑫𝑺(𝜞𝑮)) =𝝀𝟒. It follows that the 

eigenvalues of 𝑫𝑺(𝜞𝑮) is zero with multiplicity 𝟒. Therefore, 

the degree sum energy of 𝜞𝑮 is 𝑬𝑫𝑺(𝜞𝑮) = 𝟎. 

In another case, if 𝑮 = 𝑮𝟐, with each vertex 𝒂𝒊𝒃, where 

𝟏 ≤ 𝒊 ≤ 𝟓, is of degree four as shown in Figure 2 (ii), then the 

non-commuting graph of 𝑮𝟐 on five vertices is the complete 

graph, 𝑲𝟓. This implies that we have a 𝟓 × 𝟓 degree sum 

matrix of 𝜞𝑮 with the non-diagonal entries are 𝟒 + 𝟒 = 𝟖, 

while the diagonal entries are zero. Then, we obtain 

𝑫𝑺(𝜞𝑮) =

[
 
 
 
 
𝟎 𝟖 𝟖 𝟖 𝟖
𝟖 𝟎 𝟖 𝟖 𝟖
𝟖 𝟖 𝟎 𝟖 𝟖
𝟖 𝟖 𝟖 𝟎 𝟖
𝟖 𝟖 𝟖 𝟖 𝟎]

 
 
 
 

. 

 

Furthermore, the characteristic polynomial of 𝜞𝑮 is 

𝑷𝑫𝑺(𝜞𝑮)(𝝀) = 𝐝𝐞𝐭(𝝀𝑰𝟓 − 𝑫𝑺(𝜞𝑮)) = (𝝀 + 𝟖)𝟒(𝝀 − 𝟑𝟐). 

This implies that the eigenvalues of 𝑫𝑺(𝜞𝑮) are a single 𝝀 =

𝟑𝟐  and 𝝀 = −𝟖 with multiplicity 4. Therefore, 𝑬𝑫𝑺(𝜞𝑮) =

|𝟑𝟐| + 𝟒|−𝟖| = 𝟔𝟒 = 𝟒(𝟓 − 𝟏)𝟐. 

 

Theorem 3.2. Let 𝜞𝑮 be the non-commuting graph on 𝑮, 

where 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐 ⊂ 𝑫𝟐𝒏, then the characteristic 

polynomial of degree sum matrices for 𝜞𝑮 is given by 

1.  𝑷𝑫𝑺(𝜞𝑮)(𝝀) = (𝝀 + 𝟐𝒏)𝒏−𝟐(𝝀 + 𝟐(𝟐𝒏 − 𝟐))𝒏−𝟏(𝝀𝟐 −

𝟐(𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐)𝝀 − 𝒏(𝒏 − 𝟏)(𝒏𝟐 + 𝟏𝟐𝒏 − 𝟏𝟐), for 𝒏 is 

odd, and 

2.  𝑷𝑫𝑺(𝜞𝑮)(𝝀) = (𝝀 + 𝟐𝒏)𝒏−𝟑(𝝀 + 𝟐(𝟐𝒏 − 𝟒))𝒏−𝟏(𝝀𝟐 −

𝟐(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒)𝝀 − 𝒏(𝒏𝟑 + 𝟔𝒏𝟐 − 𝟐𝟒𝒏 + 𝟏𝟔), for 𝒏 is 

even. 

 

Proof. 

1. By Theorem 2.1 for the odd 𝒏 case, we have 𝒅𝒂𝒊 = 𝒏 and 

𝒅𝒂𝒊𝒃 = 𝟐𝒏 − 𝟐, for all 𝟏 ≤ 𝒊 ≤ 𝒏. Then, using the fact 

that 𝒁(𝑫𝟐𝒏) = {𝒆}, we have 𝟐𝒏 − 𝟏 vertices for 𝜞𝑮, 

where 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐. The set of vertices consists of 𝒏 − 𝟏 

vertices of 𝒂𝒊, for 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏, and 𝒏 vertices of 𝒂𝒊𝒃, 

for 𝟏 ≤ 𝒊 ≤ 𝒏. Then, the degree sum matrix for 𝜞𝑮 is a 

(𝟐𝒏 − 𝟏) × (𝟐𝒏 − 𝟏) matrix, 𝑫𝑺(𝜞𝑮) = [𝒅𝒔𝒑𝒒]  whose 

(𝒑, 𝒒)-th entries are:  

(i)    𝒅𝒔𝒑𝒒 = 𝒏 + 𝒏 = 𝟐𝒏, for 𝒑 ≠ 𝒒, and 𝟏 ≤ 𝒑, 𝒒 ≤ 𝒏 −

𝟏, 

(ii)   𝒅𝒔𝒑𝒒 = 𝒏 + (𝟐𝒏 − 𝟐) = 𝟑𝒏 − 𝟐, for 𝟏 ≤ 𝒑 ≤ 𝒏 − 𝟏 

and 𝒏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟏, 

(iii)  𝒅𝒔𝒑𝒒 = (𝟐𝒏 − 𝟐) + 𝒏 = 𝟑𝒏 − 𝟐, for 𝒏 ≤ 𝒑 ≤ 𝟐𝒏 −

𝟏 and 𝟏 ≤ 𝒒 ≤ 𝒏 − 𝟏, 

(iv) 𝒅𝒔𝒑𝒒 = (𝟐𝒏 − 𝟐) + (𝟐𝒏 − 𝟐) = 𝟐(𝟐𝒏 − 𝟐), for 𝒑 ≠

𝒒, 𝒏 ≤ 𝒑, 𝒒 ≤ 𝟐𝒏 − 𝟏, 

(v)   𝒅𝒔𝒑𝒒 = 𝟎, for 𝒑 = 𝒒. 

 

We can construct 𝑫𝑺(𝜞𝑮) given as follows: 
𝑫𝑺(𝜞𝑮)

=

[
 
 
 
 
 
 
 

𝟎 𝟐𝒏 ⋯ 𝟐𝒏 𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐
𝟐𝒏 𝟎 ⋯ 𝟐𝒏 𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟐𝒏 𝟐𝒏 ⋯ 𝟎 𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐
𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐 𝟎 𝟐(𝟐𝒏 − 𝟐) ⋯ 𝟐(𝟐𝒏 − 𝟐)

𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐 𝟐(𝟐𝒏 − 𝟐) 𝟎 ⋯ 𝟐(𝟐𝒏 − 𝟐)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐 𝟐(𝟐𝒏 − 𝟐) 𝟐(𝟐𝒏 − 𝟐) ⋯ 𝟎 ]
 
 
 
 
 
 
 

 

= [
𝟐𝒏(𝑱𝒏−𝟏 − 𝑰𝒏−𝟏) (𝟑𝒏 − 𝟐)𝑱(𝒏−𝟏)×𝒏

(𝟑𝒏 − 𝟐)𝑱𝒏×(𝒏−𝟏) 𝟐(𝟐𝒏 − 𝟐)(𝑱𝒏 − 𝑰𝒏)
] 

= [
𝑩𝟏 𝑩𝟐

𝑩𝟑 𝑩𝟒
]. 

 

In this case, 𝑫𝑺(𝜞𝑮) is divided into four blocks, where the 

first block is 𝑩𝟏, which is a block of (𝒏 − 𝟏) × (𝒏 − 𝟏) 

matrix with zero diagonal, and every non-diagonal entry 

is 𝟐𝒏. In the next two blocks, we have 𝑩𝟐 and 𝑩𝟑 

matrices, which are of the size (𝒏 − 𝟏) × 𝒏 and 𝒏 × (𝒏 −

𝟏), respectively, whose entries are 𝟑𝒏 − 𝟐. The last block 

 
Figure 2. Non-commuting graph of 𝑮, where (i) 𝑮 = 𝑮𝟏, and (ii) 𝑮 = 𝑮𝟐. 
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is 𝑩𝟒, which is an 𝒏 × 𝒏 matrix with zero diagonal, and 

every non-diagonal entry is 𝟐(𝟐𝒏 − 𝟐). Then, we obtain 

the characteristic polynomial of 𝑫𝑺(𝜞𝑮) from the 

following determinant 

 

𝑷𝑫𝑺(𝜞𝑮)(𝝀) = |𝝀𝑰𝟐𝒏−𝟏 − 𝑫𝑺(𝜞𝑮)| 

= |
(𝜆 + 2𝑛)𝐼𝑛−1 − 2𝑛𝐽𝑛−1 −(3𝑛 − 2)𝐽(𝑛−1)×𝑛

−(3𝑛 − 2) 𝐽𝑛×(𝑛−1) (𝜆 + 2(2𝑛 − 2))𝐼𝑛 − 2(2𝑛 − 2)𝐽𝑛
|. 

Using Lemma 2.1, with 𝒂 = 𝟐𝒏, 𝒃 = 𝟐(𝟐𝒏 − 𝟐), 𝒄 =

𝟑𝒏 − 𝟐, 𝒅 = 𝟑𝒏 − 𝟐, 𝒏𝟏 = 𝒏 − 𝟏 and 𝒏𝟐 = 𝒏, we obtain 

the required result. 

 

2. Again, by Theorem 2.1 for the even 𝒏 case, we know that 

𝒅𝒂𝒊 = 𝒏 and 𝒅𝒂𝒊𝒃 = 𝟐𝒏 − 𝟒, for all 𝟏 ≤ 𝒊 ≤ 𝒏. Then, 

using the fact that 𝒁(𝑫𝟐𝒏) = {𝒆, 𝒂
𝒏
𝟐}, we have 𝟐𝒏 − 𝟐 

vertices for 𝜞𝑮, where 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐. The set of vertices 

consists of 𝒏 − 𝟐 vertices of 𝒂𝒊, for 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏, 𝒊 ≠
𝒏

𝟐
, 

and 𝒏 vertices of 𝒂𝒊𝒃, for 𝟏 ≤ 𝒊 ≤ 𝒏. Then, the degree 

sum matrix for 𝜞𝑮 is a (𝟐𝒏 − 𝟐) × (𝟐𝒏 − 𝟐) matrix, 

𝑫𝑺(𝜞𝑮) = [𝒅𝒔𝒑𝒒] whose (𝒑, 𝒒)-th entry is 

(i)   𝒅𝒔𝒑𝒒 = 𝒏 + 𝒏 = 𝟐𝒏, for 𝒑 ≠ 𝒒, and 𝟏 ≤ 𝒑, 𝒒 ≤ 𝒏 −

𝟐, 

(ii)   𝒅𝒔𝒑𝒒 = 𝒏 + (𝟐𝒏 − 𝟒) = 𝟑𝒏 − 𝟒, for 𝟏 ≤ 𝒑 ≤ 𝒏 − 𝟐 

and 𝒏 − 𝟏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟐, 

(iii)  𝒅𝒔𝒑𝒒 = (𝟐𝒏 − 𝟒) + 𝒏 = 𝟑𝒏 − 𝟒, for 𝒏 − 𝟏 ≤ 𝒑 ≤

𝟐𝒏 − 𝟐 and 𝟏 ≤ 𝒒 ≤ 𝒏 − 𝟐, 

(iv) 𝒅𝒔𝒑𝒒 = (𝟐𝒏 − 𝟒) + (𝟐𝒏 − 𝟒) = 𝟐(𝟐𝒏 − 𝟒), for 𝒑 ≠

𝒒, 𝒏 − 𝟏 ≤ 𝒑, 𝒒 ≤ 𝟐𝒏 − 𝟐, 

(v)  𝒅𝒆𝒔𝒑𝒒 = 𝟎, for 𝒑 = 𝒒. 

 

We can construct 𝑫𝑺(𝜞𝑮) as follows: 
𝑫𝑺(𝜞𝑮)

=

[
 
 
 
 
 
 
 

𝟎 𝟐𝒏 ⋯ 𝟐𝒏 𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒
𝟐𝒏 𝟎 ⋯ 𝟐𝒏 𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟐𝒏 𝟐𝒏 ⋯ 𝟎 𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒
𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒 𝟎 𝟐(𝟐𝒏 − 𝟒) ⋯ 𝟐(𝟐𝒏 − 𝟒)

𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒 𝟐(𝟐𝒏 − 𝟒) 𝟎 ⋯ 𝟐(𝟐𝒏 − 𝟒)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒 𝟐(𝟐𝒏 − 𝟒) 𝟐(𝟐𝒏 − 𝟒) ⋯ 𝟎 ]
 
 
 
 
 
 
 

 

 = [
𝟐𝒏(𝑱𝒏−𝟐 − 𝑰𝒏−𝟐) (𝟑𝒏 − 𝟒)𝑱(𝒏−𝟐)×𝒏

(𝟑𝒏 − 𝟒)𝑱𝒏×(𝒏−𝟐) 𝟐(𝟐𝒏 − 𝟒)(𝑱𝒏 − 𝑰𝒏)
] 

 = [
𝑴𝟏 𝑴𝟐

𝑴𝟑 𝑴𝟒
].  

 

In this case, 𝑫𝑺(𝜞𝑮) is divided into four blocks, where the 

first block is 𝑴𝟏, which is a block of (𝒏 − 𝟐) × (𝒏 − 𝟐) 

matrix with zero diagonal, where every non-diagonal 

entry is 𝟐𝒏. The next two blocks are 𝑴𝟐 and 𝑴𝟑, which 

are of the size (𝒏 − 𝟐) × 𝒏 and 𝒏 × (𝒏 − 𝟐), 

respectively, whose all entries are equal to 𝟑𝒏 − 𝟒. The 

last block is 𝑴𝟒, which is an 𝒏 × 𝒏 matrix with zero 

diagonal, while every non-diagonal entry is 𝟐(𝟐𝒏 − 𝟒). 

Then, we obtain the characteristic polynomial of 𝑫𝑺(𝜞𝑮) 

from the following determinant 

𝑷𝑫𝑺(𝜞𝑮)(𝝀) = |𝝀𝑰𝟐𝒏−𝟐 − 𝑫𝑺(𝜞𝑮)| 

= |
(𝝀 + 𝟐𝒏)𝑰𝒏−𝟐 − 𝟐𝒏𝑱𝒏−𝟐 −(𝟑𝒏 − 𝟒)𝑱(𝒏−𝟐)×𝒏

−(𝟑𝒏 − 𝟒) 𝑱𝒏×(𝒏−𝟐) (𝝀 + 𝟐(𝟐𝒏 − 𝟒))𝑰𝒏 − 𝟐(𝟐𝒏 − 𝟒)𝑱𝒏
|. 

 

Using Lemma 2.1, with 𝒂 = 𝟐𝒏, 𝒃 = 𝟐(𝟐𝒏 − 𝟒), 𝒄 =

𝟑𝒏 − 𝟒, 𝒅 = 𝟑𝒏 − 𝟒, 𝒏𝟏 = 𝒏 − 𝟐 and 𝒏𝟐 = 𝒏, we obtain 

the required result. 

 

Consequently, the degree sum energy of the non-commuting 

graph for the dihedral group of order  𝟐𝒏 can be expressed 

in the following theorem. 

 

Theorem 3.3: Let 𝜞𝑮 be the non-commuting graph on 𝑮, 

where 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐, then the degree sum energy for 𝜞𝑮 is 

given by 

 

1. for 𝒏 is odd, 

𝑬𝑫𝑺(𝜞𝑮) = 𝟐(𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐) +

𝟐√𝟏𝟎𝒏𝟒−𝟐𝟓𝒏𝟑 + 𝟐𝟒𝒏𝟐 − 𝟏𝟐𝒏 + 𝟒, 

 

2. and for 𝒏 is even, 

𝑬𝑫𝑺(𝜞𝑮) = 𝟐(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒) +

𝟐√𝟏𝟎𝒏𝟒−𝟒𝟖𝒏𝟑 + 𝟖𝟏𝒏𝟐 − 𝟓𝟔𝒏 + 𝟏𝟔. 

 

Proof. 

1. By Theorem 3.2 (1), for the odd 𝒏, the characteristic 

polynomial of 𝑫𝑺(𝜞𝑮) has four eigenvalues, with the first 

eigenvalue is 𝝀𝟏 = −𝟐𝒏 of multiplicity 𝒏 − 𝟐, and the 

second eigenvalue is 𝝀𝟐 = −𝟐(𝟐𝒏 − 𝟐) of multiplicity 

𝒏 − 𝟏. The quadratic formula gives the other two 

eigenvalues, which are 𝝀𝟑, 𝝀𝟒 = (𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐) ±

√𝟏𝟎𝒏𝟒−𝟐𝟓𝒏𝟑 + 𝟐𝟒𝒏𝟐 − 𝟏𝟐𝒏 + 𝟒, where one is a 

positive real number, and the other is negative. Hence, 

the degree sum energy for 𝜞𝑮 is 

𝑬𝑫𝑺(𝜞𝑮) = (𝒏 − 𝟐)|−𝟐𝒏| + (𝒏 − 𝟏)|−𝟐(𝟐𝒏 − 𝟐)| 

+ |(𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐) ± √𝟏𝟎𝒏𝟒−𝟐𝟓𝒏𝟑 + 𝟐𝟒𝒏𝟐 − 𝟏𝟐𝒏 + 𝟒  | 

= 𝟐(𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐) + 𝟐√𝟏𝟎𝒏𝟒−𝟐𝟓𝒏𝟑 + 𝟐𝟒𝒏𝟐 − 𝟏𝟐𝒏 + 𝟒. 

 

2. For 𝒏 is even and following Theorem 3.2 (2), the 

characteristic polynomial of 𝑫𝑺(𝜞𝑮) has four 

eigenvalues, where the first eigenvalue is 𝝀𝟏 = −𝟐𝒏 of 

multiplicity 𝒏 − 𝟑, and the second eigenvalue is 𝝀𝟐 =

−𝟐(𝟐𝒏 − 𝟒) of multiplicity 𝒏 − 𝟏. The quadratic formula 

gives the other two eigenvalues, which are 𝝀𝟑, 𝝀𝟒 =

(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒) ± √𝟏𝟎𝒏𝟒−𝟒𝟖𝒏𝟑 + 𝟖𝟏𝒏𝟐 − 𝟓𝟔𝒏 + 𝟏𝟔. 

One is a positive real number for this current case, and 

the other is negative. Therefore, the degree sum energy 

for 𝜞𝑮 is 

𝑬𝑫𝑺(𝜞𝑮) = (𝒏 − 𝟑)|−𝟐𝒏| + (𝒏 − 𝟏)|−𝟐(𝟐𝒏 − 𝟒)| 

+ |(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒)

± √𝟏𝟎𝒏𝟒−𝟒𝟖𝒏𝟑 + 𝟖𝟏𝒏𝟐 − 𝟓𝟔𝒏 + 𝟏𝟔  | 

= 𝟐(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒) +

𝟐√𝟏𝟎𝒏𝟒−𝟒𝟖𝒏𝟑 + 𝟖𝟏𝒏𝟐 − 𝟓𝟔𝒏 + 𝟏𝟔. 
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4. Conclusion 
 

This paper has given the general formula of degree sum 

energy of non-commuting graph for dihedral groups of order 

𝟐𝒏, 𝒏 ≥ 𝟑. For 𝒏 is odd, 𝑬𝑫𝑺(𝜞𝑮) = 𝟐(𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐) +

𝟐√𝟏𝟎𝒏𝟒−𝟐𝟓𝒏𝟑 + 𝟐𝟒𝒏𝟐 − 𝟏𝟐𝒏 + 𝟒, while for 𝒏 is even, 

𝑬𝑫𝑺(𝜞𝑮) = 𝟐(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒) +

𝟐√𝟏𝟎𝒏𝟒−𝟒𝟖𝒏𝟑 + 𝟖𝟏𝒏𝟐 − 𝟓𝟔𝒏 + 𝟏𝟔. 
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VIRTUAL SYMPOSIUM ON MULTIDISCIPLINARY SCIENCE 2021 

DEGREE EXPONENT SUM ENERGY OF COMMUTING GRAPH FOR DIHEDRAL GROUPS  
Mamika Ujianita Romdhini1ac, Athirah Nawawi2ab*, Chen Chuei Yee3a 
 

 

Abstract: For a finite group 𝐺 and a nonempty subset 𝑋 of 𝐺, we construct a graph with a set of vertex 𝑋 such that any pair of distinct 

vertices of 𝑋 are adjacent if they are commuting elements in 𝐺. This graph is known as the commuting graph of 𝐺 on 𝑋, denoted by 𝛤𝐺[𝑋]. 

The degree exponent sum (DES) matrix of a graph is a square matrix whose (𝑝, 𝑞)-th entry is 𝑑𝑣𝑝

𝑑𝑣𝑞 + 𝑑𝑣𝑞

𝑑𝑣𝑝  whenever 𝑝 is different from 

𝑞, otherwise, it is zero, where 𝑑𝑣𝑝  (or 𝑑𝑣𝑞
) is the degree of the vertex 𝑣𝑝 (or vertex, 𝑣𝑞) of a graph. This study presents results for the DES 

energy of commuting graph for dihedral groups of order 2𝑛, using the absolute eigenvalues of its DES matrix. 

 

Keywords: Commuting graph, dihedral group, degree exponent sum matrix, the energy of a graph. 
 

 
1. Introduction 
 

A group is a set of elements associated by a binary 

operation, which satisfies closure property, has a unique 

identity element, and unique inverses for each element in 

the group (Aschbacher, 2000). Suppose now that 𝑮 is any 

finite group and 𝒁(𝑮) is the center of 𝑮. The commuting 

graph of 𝑮 on a nonempty subset 𝑿  of 𝑮, denoted by 𝜞𝑮[𝑿], 

is a graph whose vertex set is 𝑿, and two distinct vertices are 

adjacent if they commute in 𝑮. If 𝑿 = 𝑮\𝒁(𝑮), then we write 

𝜞𝑮 ≔ 𝜞𝑮[𝑿] and 𝜞𝑮 is called the commuting graph of 𝑮. This 

graph is a simple undirected graph introduced by Brauer and 

Fowler (1955).  

The commuting graph of 𝑮 on 𝑿 has been further 

associated with the spectral graph theory, where matrices 

are associated with a graph. The adjacency matrix 

𝑨(𝜞𝑮[𝑿]) = [𝒂𝒑𝒒] of 𝜞𝑮[𝑿], is an 𝒏 × 𝒏 matrix, defined by 

its entries 𝒂𝒑𝒒 are equal to 1 if there is an edge between the 

vertices 𝒗𝒑, 𝒗𝒒, and 0 otherwise. Clearly, 𝑨(𝜞𝑮[𝑿]) is a 

symmetric matrix with zero diagonal entries since 𝜞𝑮[𝑿] is a 

simple graph. For real numbers 𝝀 and an 𝒏 × 𝒏 identity 

matrix 𝑰𝒏, the characteristic polynomial of 𝜞𝑮[𝑿] is defined 

by 𝑷𝑨(𝜞𝑮[𝑿])(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝒏 − 𝑨(𝜞𝑮[𝑿])). The roots of 

𝑷𝑨(𝜞𝑮[𝑿])(𝝀) = 𝟎 are  𝝀𝟏, 𝝀𝟐, … , 𝝀𝒏 and are known as the 

eigenvalues of 𝜞𝑮[𝑿].  

By the definition of adjacency matrix, the (ordinary) 

spectrum of the finite graph 𝜞𝑮[𝑿] is the list of eigenvalues 

𝝀𝟏, 𝝀𝟐, … , 𝝀𝒎, with their respective multiplicities 

𝒌𝟏, 𝒌𝟐, … , 𝒌𝒎 as exponents, denoted by 𝑺𝒑𝒆𝒄(𝜞𝑮[𝑿]) =

{𝝀𝟏
(𝒌𝟏)

, 𝝀𝟐
(𝒌𝟐)

, … , 𝝀𝒎
(𝒌𝒎)

}. Furthermore, the energy of 𝜞𝑮[𝑿] is 

the sum of the absolute eigenvalues of 𝑨(𝜞𝑮[𝑿]), which is 

𝑬(𝜞𝑮[𝑿]) = ∑ |𝝀𝒊|
𝒏
𝒊=𝟏 . Other than that, Gutman found this 

definition in 1978 by considering a chemical molecule as a 

graph and estimating the 𝝅-electron energy. 

Several studies regarding the commuting graph involve 

the spectrum and energy of its adjacency matrix. For finite 

non-abelian groups, Dutta and Nath (2017a) and Dutta and 

Nath (2017b) have described the formula for the spectrum 

of the commuting graph. Laplacian spectrum, signless 

Laplacian spectrum and their corresponding energies of the 

commuting graph of dihedral groups can be found in Dutta 

and Nath (2018) and Dutta and Nath (2021). Furthermore, 

the discussion of the adjacency energy for the subgroup 

graph of the dihedral group has been done by Abdussakir et 

al. (2019). In 2022, Sharafdini et al. discussed the commuting 

graph for some finite groups with abelian centralizers and 

found the energy for some particular families of AC groups. 

Apart from the adjacency matrix, Laplacian matrix, and 

signless Laplacian matrix, another matrix related to the 

degree of vertices in a graph defined by Basavanagoud and 

Eshwarachandra in 2020 is the principal focus point here, 

called the degree exponent sum (DES) matrix. A limited 

number of studies central to the DES matrices for the 

commuting graph have been found. This fact motivates us to 

have a detailed description of the DES energy for the 

commuting graphs of 𝑮.  
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In this paper, we focus on 𝜞𝑮[𝑿] constructed on the non-

abelian dihedral group of order 𝟐𝒏,𝒏 ≥ 𝟑, denoted as 

𝑫𝟐𝒏 = 〈𝒂, 𝒃 ∶  𝒂𝒏 = 𝒃𝟐 = 𝒆, 𝒃𝒂𝒃 = 𝒂−𝟏〉. The center of 𝑫𝟐𝒏, 

𝒁(𝑫𝟐𝒏) is either {𝒆} 𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝 or {𝒆, 𝒂
𝒏
𝟐} 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧. The 

centralizer of the element 𝒂𝒊 in the group 𝑫𝟐𝒏 is 𝑪𝑫𝟐𝒏 (𝒂
𝒊) =

{ 𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝒏 }  and for the element 𝒂𝒊𝒃 is either 

𝑪𝑫𝟐𝒏
(𝒂𝒊𝒃) = {𝒆, 𝒂𝒊𝒃} , if 𝒏 is odd or 𝑪𝑫𝟐𝒏

(𝒂𝒊𝒃) =

{𝒆, 𝒂
𝒏
𝟐, 𝒂𝒊𝒃, 𝒂

𝒏
𝟐
+𝒊𝒃}, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧. 

 

2. Preliminaries   
   

Now, we are ready to see the definition of the degree 

exponent sum (DES) matrix, considering 𝒅𝒗𝒑
 as the degree of 

𝒗𝒑, which is the number of vertices adjacent to 𝒗𝒑. 

Moreover, if every vertex has the same degree 𝒓, then the 

graph is called 𝒓-regular graph. 

Definition 2.1. (Basavanagoud & Eshwarachandra, 2020) 

The DES  matrix of order 𝒏 × 𝒏 associated with 𝜞𝑮[𝑿] is given 

by 𝑫𝑬𝑺(𝜞𝑮[𝑿]) = [𝒅𝒆𝒔𝒑𝒒]  whose (𝒑, 𝒒)-th entry is 

 

𝒅𝒆𝒔𝒑𝒒 = {
𝒅𝒗𝒑

𝒅𝒗𝒒 + 𝒅𝒗𝒒

𝒅𝒗𝒑 ,    𝐢𝐟 𝒑 ≠ 𝒒

𝟎,                               𝐢𝐟 𝒑 = 𝒒
. 

 

Therefore, the DES energy of 𝜞𝑮[𝑿] can be defined as 

follows: 

𝑬𝑫𝑬𝑺(𝜞𝑮[𝑿]) = ∑|𝝀𝒊|

𝒏

𝒊=𝟏

, 

where 𝝀𝟏, 𝝀𝟐,⋯ , 𝝀𝒏 are the eigenvalues (not necessarily 

distinct) of 𝑫𝑬𝑺(𝜞𝑮[𝑿]). 

 

In this section, we include some previous results 

beneficial for the next section. The following lemma is 

important for computing the characteristic polynomial of the 

commuting graph 𝜞𝑮. 

 

Lemma 2.1: (Ramane & Shinde, 2017) If 𝒂, 𝒃, 𝒄 and 𝒅 are real 

numbers, and 𝑱𝒏 is an 𝒏 × 𝒏 matrix whose all elements are 

equal to 1, then the determinant of the (𝒏𝟏 + 𝒏𝟐) × (𝒏𝟏 +

𝒏𝟐) matrix of the form 

 

|
(𝝀 + 𝒂)𝑰𝒏𝟏

− 𝒂𝑱𝒏𝟏
−𝒄𝑱𝒏𝟏×𝒏𝟐

−𝒅𝑱𝒏𝟐×𝒏𝟏
(𝝀 + 𝒃)𝑰𝒏𝟐

− 𝒃𝑱𝒏𝟐

|, 

 

can be simplified as given in the following expression 

(𝝀 + 𝒂)𝒏𝟏−𝟏(𝝀 + 𝒃)𝒏𝟐−𝟏((𝝀 − (𝒏𝟏 − 𝟏)𝒂)(𝝀 − (𝒏𝟐 −

𝟏)𝒃) − 𝒏𝟏𝒏𝟐𝒄𝒅), 

where 𝟏 ≤ 𝒏𝟏, 𝒏𝟐 ≤ 𝒏 and 𝒏𝟏 + 𝒏𝟐 = 𝒏. 

 

A graph with 𝒏 vertices, where every vertex is adjacent 

to all other vertices, is called a complete graph 𝑲𝒏 and the 

complement of 𝑲𝒏 is denoted by �̅�𝒏. The following lemma is 

the result of the spectrum of 𝑲𝒏, which is useful in 

computing 𝑬𝑫𝑬𝑺(𝜞𝑮[𝑿]). 

Lemma 2.2: (Brouwer & Haemers, 2010) If 𝑲𝒏 is the 

complete graph on 𝒏 vertices, then its adjacency matrix is 

𝑱𝒏 − 𝑰𝒏 and the spectrum of 𝑲𝒏 is {(𝒏 − 𝟏)(𝟏), (−𝟏)(𝒏−𝟏)}. 

  

3. Main Results  
 

This section presents several results on the degree 

exponent sum (DES) energy of the commuting graph on the 

dihedral group of order 𝟐𝒏. We divide 𝒏 into two cases, 

namely when 𝒏 is odd and 𝒏 is even. This is strictly for 𝒏 ≥

𝟑 since the dihedral group is abelian for 𝒏 = 𝟏 and 𝒏 = 𝟐.  

Recall that the dihedral group of order 𝟐𝒏 is 𝑫𝟐𝒏 =

〈𝒂, 𝒃 ∶  𝒂𝒏 = 𝒃𝟐 = 𝒆, 𝒃𝒂𝒃 = 𝒂−𝟏〉. Let the set of rotation 

elements of 𝑫𝟐𝒏, which are not members of 𝒁(𝑫𝟐𝒏), be 

written as 𝑮𝟏 = {𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝒏}\𝒁(𝑫𝟐𝒏) and 𝑮𝟐 =

{𝒂𝒊𝒃:𝟏 ≤ 𝒊 ≤ 𝒏} be the set of reflection elements of 𝑫𝟐𝒏. 

The following is the result of the degree of each vertex in the 

commuting graph of 𝑫𝟐𝒏. 

 

Theorem 3.1: Let 𝜞𝑫𝟐𝒏
 be the commuting graph of 𝑫𝟐𝒏. 

Then, 

1. the degree of 𝒂𝒊 in 𝜞𝑫𝟐𝒏
, denoted as 𝒅𝒂𝒊, is given by 

𝒅𝒂𝒊 = {
𝒏 − 𝟐, 𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝
𝒏 − 𝟑, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧

, 

2. the degree of 𝒂𝒊𝒃 in 𝜞𝑫𝟐𝒏
, denoted as 𝒅𝒂𝒊𝒃, is given by 

𝒅𝒂𝒊𝒃 = {
𝟎, 𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝
𝟏, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧

. 

 

Proof.  

1. If 𝒏 is odd, then 𝒁(𝑫𝟐𝒏) = {𝒆}. Since 𝑪𝑫𝟐𝒏 (𝒂
𝒊) =

{ 𝒂𝒊 ∶ 𝟏 ≤ 𝒊 ≤ 𝒏}, then 𝒅𝒂𝒊 = 𝒏 − 𝟐, removing 𝒆 and 𝒂𝒊 

itself. If 𝒏 is even, then  𝒁(𝑫𝟐𝒏) = {𝒆, 𝒂
𝒏
𝟐}. Consequently, 

we have 𝒅𝒂𝒊 = 𝒏 − 𝟑, removing 𝒆, 𝒂
𝒏
𝟐, and 𝒂𝒊 itself. 

2. If 𝒏 is odd, the element 𝒂𝒊𝒃, where 𝟏 ≤ 𝒊 ≤ 𝒏, has the 

centralizer 𝑪𝑫𝟐𝒏 (𝒂
𝒊𝒃) = {𝒆, 𝒂𝒊𝒃} of size two, then there 

is no edge between any pair of vertices in 𝜞𝑮. Therefore, 

𝒅𝒂𝒊𝒃 = 𝟎. If 𝒏 is even, the centralizer of each element 𝒂𝒊𝒃 

is given by 

𝑪𝑫𝟐𝒏 (𝒂
𝒊𝒃) = {𝒆, 𝒂

𝒏
𝟐, 𝒂𝒊𝒃, 𝒂

𝒏
𝟐+𝒊𝒃}, for all 𝟏 ≤ 𝒊 ≤ 𝒏. 

Then, by excluding 𝒆 and 𝒂
𝒏
𝟐, which are the central 

elements in 𝑫𝟐𝒏, there exists only an edge between the 

vertices 𝒂𝒊𝒃 and 𝒂
𝒏
𝟐+𝒊𝒃 in 𝜞𝑮, for all 𝟏 ≤ 𝒊 ≤ 𝒏. Hence, 

𝒅𝒂𝒊𝒃 = 𝟏.            

 

Consequently, the isomorphism of the commuting graph 

with the common type of graphs can be seen in the 

following result: 

 

Theorem 3.2: Let 𝑿 be any nonempty subset of  𝑫𝟐𝒏. 

1. If  𝑿 = 𝑮𝟏, then 

𝜞𝑫𝟐𝒏
[𝑿] ≅ 𝑲𝒎, where 𝒎 = |𝑮𝟏|. 
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2. If  𝑿 = 𝑮𝟐, then  

𝜞𝑫𝟐𝒏
[𝑿] ≅ {

�̅�𝒏,                               𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝
𝟏 − 𝐫𝐞𝐠𝐮𝐥𝐚𝐫 𝐠𝐫𝐚𝐩𝐡, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧

 

  

Proof: 

1. The centralizer of  𝒂𝒊, for 𝟏 ≤ 𝒊 ≤ 𝒏, is 𝑪𝑫𝟐𝒏 (𝒂
𝒊) =

{ 𝒂𝒊 ∶ 𝟏 ≤ 𝒊 ≤ 𝒏} of size 𝒏. This implies that every vertex 

of 𝑮𝟏 is adjacent to all vertices in the set itself. Thus, 

𝜞𝑫𝟐𝒏
[𝑮𝟏] ≅ 𝑲𝒎, where 𝒎 = |𝑮𝟏|. 

2.  It follows from Theorem 3.1 that the degree of 𝒂𝒊𝒃 in 

𝜞𝑫𝟐𝒏
[𝑮𝟐] is all zero for 𝟏 ≤ 𝒊 ≤ 𝒏, where 𝒏 is odd. Hence, 

𝜞𝑫𝟐𝒏
[𝑮𝟐] ≅ �̅�𝒏, a complement of the complete graph on 

𝒏 vertices. Now, suppose 𝒏 is even. Again, by Theorem 

3.1, the degree of 𝒂𝒊𝒃 in 𝜞𝑫𝟐𝒏
[𝑮𝟐] is all 1. This implies 

that 𝜞𝑫𝟐𝒏
[𝑮𝟐] is disconnected, with each component 

isomorphic to the 1-regular graph.  

       

We illustrate the two theorems above via the following 

examples for 𝒏 = 𝟒 and 𝒏 = 𝟓. 

 

Example 1. Let 𝜞𝑫𝟖
 be the commuting graph of 𝑫𝟖, where 

𝑫𝟖 = {𝒆, 𝒂,  𝒂𝟐,  𝒂𝟑, 𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃}, 𝒁(𝑫𝟖) = {𝒆, 𝒂𝟐}, 

𝑮𝟏 = {𝒂, 𝒂𝟑}, 𝑮𝟐 = {𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃}, 𝑪𝑫𝟖 (𝒃) =

{𝒆,  𝒂𝟐, 𝒃,  𝒂𝟐𝒃} = 𝑪𝑫𝟖 (𝒂
𝟐𝒃), 𝑪𝑫𝟖 (𝒂𝒃) =

{𝒆,  𝒂𝟐, 𝒂𝒃,  𝒂𝟑𝒃} = 𝑪𝑫𝟖 (𝒂
𝟑𝒃). Using the information on the 

centralizer of each element in 𝑫𝟖, the commuting graph of 

𝑫𝟖 is as in Figure 1. 

 

From Figure 1, it is clear that the degree of each vertex 𝒂 

and 𝒂𝟑 is one. In particular, if 𝑿 = 𝑮𝟏, then 𝜞𝑫𝟖
[𝑮𝟏] is a 

complete graph on two vertices, 𝑲𝟐. However, for each 

vertex 𝒂𝒊𝒃, for 𝟏 ≤ 𝒊 ≤ 𝟒, its degree is also one. If 𝑿 = 𝑮𝟐, 

then 𝜞𝑫𝟖
[𝑮𝟐] is a disconnected 1-regular graph with two 

components isomorphic to 𝑲𝟐.  

 

Example 2. Let 𝜞𝑫𝟏𝟎
 be the commuting graph of 𝑫𝟏𝟎, where 

𝑫𝟏𝟎 = {𝒆, 𝒂,  𝒂𝟐,  𝒂𝟑,  𝒂𝟒 𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃,  𝒂𝟒𝒃}, 

𝒁(𝑫𝟏𝟎) = {𝒆}, 𝑮𝟏 = {𝒂, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒}, 𝑮𝟐 = { 𝒃,

𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃,  𝒂𝟒𝒃}, 𝑪𝑫𝟏𝟎 (𝒂
𝒊𝒃) = {𝒂𝒊𝒃}, and 𝑪𝑫𝟏𝟎 (𝒂

𝒊) =

{𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝟒}. Using the information on the centralizer of 

each element in 𝑫𝟏𝟎, the commuting graph of 𝑫𝟏𝟎 is as in 

Figure 2. 

 

From Figure 2, it is clear that the degree of each vertex 

𝒂𝒊, where 𝟏 ≤ 𝒊 ≤ 𝟒 is three. In particular, if 𝑿 = 𝑮𝟏, then 

𝜞𝑫𝟏𝟎
[𝑮𝟏] is a complete graph on four vertices, 𝑲𝟒. However, 

for each vertex 𝒂𝒊𝒃, for 𝟏 ≤ 𝒊 ≤ 𝟓, its degree is zero. If 

𝑿 = 𝑮𝟐, then 𝜞𝑫𝟏𝟎
[𝑮𝟐] is a disconnected graph with five 

isolated vertices and isomorphic to the complement of a 

complete graph on five vertices, �̅�𝟓. 

 

Theorem 3.3: Let 𝑿 be any nonempty subset of 𝑫𝟐𝒏. 

1. If 𝑿 = 𝑮𝟏, then  

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑿]) = {

𝟒(𝒏 − 𝟐)𝒏−𝟏,    𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝

𝟒(𝒏 − 𝟑)𝒏−𝟐,    𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧
. 

2. If 𝑿 = 𝑮𝟐, then  

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑿]) = 𝟒(𝒏 − 𝟏). 

  

Proof. 

2. When 𝒏 is odd. From Theorem 3.2 (1),  𝜞𝑫𝟐𝒏
[𝑮𝟏] = 𝑲𝒎, 

where 𝒎 = |𝑮𝟏| = 𝒏 − 𝟏, removing 𝒆 in 𝒁(𝑫𝟐𝒏). Then, 

every vertex of 𝜞𝑫𝟐𝒏
[𝑮𝟏] has degree 𝒏 − 𝟐. 

Subsequently, we can construct an (𝒏 − 𝟏) × (𝒏 − 𝟏) 

DES matrix of 𝜞𝑫𝟐𝒏
[𝑮𝟏], 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏

[𝑮𝟏]) = [𝒅𝒆𝒔𝒑𝒒] 

whose (𝒑, 𝒒)-th entry is 𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟐)𝒏−𝟐 + (𝒏 −

𝟐)𝒏−𝟐 = 𝟐(𝒏 − 𝟐)𝒏−𝟐, for 𝒑 ≠ 𝒒, and 0 otherwise: 

𝑫𝑬𝑺( 𝜞𝑫𝟐𝒏
[𝑮𝟏])

= [

𝟎 𝟐(𝒏 − 𝟐)𝒏−𝟐 ⋯ 𝟐(𝒏 − 𝟐)𝒏−𝟐

𝟐(𝒏 − 𝟐)𝒏−𝟐 𝟎 ⋯ 𝟐(𝒏 − 𝟐)𝒏−𝟐

⋮ ⋮ ⋱ ⋮
𝟐(𝒏 − 𝟐)𝒏−𝟐 𝟐(𝒏 − 𝟐)𝒏−𝟐 ⋯ 𝟎

] 

 

 = 𝟐(𝒏 − 𝟐)𝒏−𝟐 [

𝟎 𝟏 ⋯ 𝟏
𝟏 𝟎 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟎

]. 

 

In other words, the DES matrix of 𝜞𝑫𝟐𝒏
[𝑮𝟏] is the product 

of 𝟐(𝒏 − 𝟐)𝒏−𝟐 and the adjacency matrix of 𝑲𝒏−𝟏. Based 

 

Figure 2. Commuting graph 𝛤𝐷10
. 

 

 

Figure 1. Commuting graph of 𝐷8. 
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on Lemma 2.2, 𝑺𝒑𝒆𝒄(𝑲𝒏−𝟏)  is given by {(𝒏 −

𝟐)(𝟏), (−𝟏)(𝒏−𝟐)}. Since the adjacency energy of 𝑲𝒏−𝟏 is 

|𝒏 − 𝟐| + (𝒏 − 𝟐)|−𝟏| = 𝟐(𝒏 − 𝟐), the DES energy of 

𝜞𝑫𝟐𝒏
[𝑮𝟏] will be 𝟐(𝒏 − 𝟐)𝒏−𝟐 ∙ 𝟐(𝒏 − 𝟐) = 𝟒(𝒏 −

𝟐)𝒏−𝟏.   

 

When 𝒏 is even. From Theorem 3.2 (1),  𝜞𝑫𝟐𝒏
[𝑮𝟏] = 𝑲𝒎, 

where 𝒎 = |𝑮𝟏| = 𝒏 − 𝟐, removing 𝒆 and 𝒂
𝒏
𝟐 in 𝒁(𝑫𝟐𝒏). 

Then, every vertex of  𝜞𝑫𝟐𝒏
[𝑮𝟏] has degree 𝒏 − 𝟑. 

Consequently, we can construct an (𝒏 − 𝟐) × (𝒏 − 𝟐) 

DES matrix of  𝜞𝑫𝟐𝒏
[𝑮𝟏], 𝑫𝑬𝑺( 𝜞𝑫𝟐𝒏

[𝑮𝟏]) = [𝒅𝒆𝒔𝒑𝒒] 

whose (𝒑, 𝒒)-th entry is 𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟑)𝒏−𝟑 + (𝒏 −

𝟑)𝒏−𝟑 = 𝟐(𝒏 − 𝟑)𝒏−𝟑, for 𝒑 ≠ 𝒒, and 0 otherwise: 

 

𝑫𝑬𝑺( 𝜞𝑫𝟐𝒏
[𝑮𝟏])

= [

𝟎 𝟐(𝒏 − 𝟑)𝒏−𝟑 ⋯ 𝟐(𝒏 − 𝟑)𝒏−𝟑

𝟐(𝒏 − 𝟑)𝒏−𝟑 𝟎 ⋯ 𝟐(𝒏 − 𝟑)𝒏−𝟑

⋮ ⋮ ⋱ ⋮
𝟐(𝒏 − 𝟑)𝒏−𝟑 𝟐(𝒏 − 𝟑)𝒏−𝟑 ⋯ 𝟎

] 

 

 = 2(𝑛 − 3)𝑛−3 [

0 1 ⋯ 1
1 0 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 0

] 

Thus, the DES matrix of  𝜞𝑫𝟐𝒏
[𝑮𝟏] is the product of 

𝟐(𝒏 − 𝟑)𝒏−𝟑 and the adjacency matrix of 𝑲𝒏−𝟐. Based 

on Lemma 2.2, 𝑺𝒑𝒆𝒄(𝑲𝒏−𝟐) is given by {(𝒏 −

𝟑)(𝟏), (−𝟏)(𝒏−𝟑)}. Since the adjacency energy of 𝑲𝒏−𝟐 is 

|𝒏 − 𝟑| + (𝒏 − 𝟑)|−𝟏| = 𝟐(𝒏 − 𝟑), the DES energy of 

𝜞𝑫𝟐𝒏
[𝑮𝟏] will be 𝟐(𝒏 − 𝟑)𝒏−𝟑 ∙ 𝟐(𝒏 − 𝟑) = 𝟒(𝒏 −

𝟑)𝒏−𝟐.   

 

2. When 𝒏 is odd. From Theorem 3.2 (2), 𝜞𝑫𝟐𝒏
[𝑮𝟐] = �̅�𝒏, 

where 𝒏 = |𝑮𝟐|. Then, all of the vertices have degree 

zero. Correspondingly, we can construct an 𝒏 × 𝒏 DES 

matrix of 𝜞𝑫𝟐𝒏
[𝑮𝟐], 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏

[𝑮𝟐]) = [𝒅𝒆𝒔𝒑𝒒] whose 

(𝒑, 𝒒)-th entry is 𝒅𝒆𝒔𝒑𝒒 = 𝟎𝟎 + 𝟎𝟎 = 𝟐, for 𝒑 ≠ 𝒒, and 0 

otherwise: 

𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = [

𝟎 𝟐 ⋯ 𝟐
𝟐 𝟎 ⋯ 𝟐
⋮ ⋮ ⋱ ⋮
𝟐 𝟐 ⋯ 𝟎

] 

= 𝟐 [

𝟎 𝟏 ⋯ 𝟏
𝟏 𝟎 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟎

]. 

 

In other words, 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = 𝟐𝑨(𝑲𝒏) is the 

multiple of two adjacency matrices of 𝑲𝒏. Thus, 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = 𝟐(|𝒏 − 𝟏| + (𝒏 − 𝟏)|−𝟏|) = 𝟒(𝒏 −

𝟏). 

 

When 𝒏 is even. From Theorem 3.2 (2),  𝜞𝑫𝟐𝒏
[𝑮𝟐] is a 

regular graph with degree one. Then, we can construct an 

𝒏 × 𝒏 DES matrix of 𝜞𝑫𝟐𝒏
[𝑮𝟐], 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏

[𝑮𝟐]) =

[𝒅𝒆𝒔𝒑𝒒] whose (𝒑, 𝒒)-th entry is 𝒅𝒆𝒔𝒑𝒒 = 𝟏𝟏 + 𝟏𝟏 = 𝟐, 

for 𝒑 ≠ 𝒒, and 0 otherwise: 

𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = [

𝟎 𝟐 ⋯ 𝟐
𝟐 𝟎 ⋯ 𝟐
⋮ ⋮ ⋱ ⋮
𝟐 𝟐 ⋯ 𝟎

] = 𝟐 [

𝟎 𝟏 ⋯ 𝟏
𝟏 𝟎 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟎

]. 

It implies that 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = 𝟐𝑨(𝑲𝒏). Thus, 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
[𝑮𝟐]) = 𝟒(𝒏 − 𝟏). 

 

The DES energy of the commuting graph 𝜞𝑫𝟐𝒏
[𝑿] for 𝑿 =

𝑮𝟏, 𝑮𝟐 are given by the following examples, for 𝒏 = 𝟒 and 

𝒏 = 𝟓. 

 

Example 3. In Figure 1, we have shown the commuting graph 

of 𝑫𝟖. When 𝑿 = 𝑮𝟏, since we only have two vertices 𝒂 and 

𝒂𝟑, we have a 𝟐 × 𝟐 DES matrix of 𝜞𝑫𝟖
[𝑮𝟏] with the non-

diagonal entries are 𝟏𝟏 + 𝟏𝟏 = 𝟐, and the diagonal entries 

are zero. We then obtain  

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟏]) = [

𝟎 𝟐
𝟐 𝟎

]. 

 

Furthermore, the characteristic polynomial of 

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟏]) is 𝑷𝑫𝑬𝑺(𝜞𝑫𝟖

[𝑮𝟏])(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟐 −

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟏])) = 𝒅𝒆𝒕 [

𝝀 −𝟐
−𝟐 𝝀

] = 𝝀𝟐 − 𝟒. It implies that 

the eigenvalues of 𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟏]) are 𝝀 = 𝟐 and 𝝀 = −2. 

Therefore, the DES energy of 𝜞𝑫𝟖
[𝑮𝟏] is 𝑬𝑫𝑬𝑺(𝜞𝑫𝟖

[𝑮𝟏]) =

|𝟐| + |−𝟐| = 𝟒 = 𝟒(𝟒 − 𝟑)𝟒−𝟐. 

 

For the case 𝑿 = 𝑮𝟐, we know that the set of vertices is 

{ 𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃}. Here, we have a 𝟒 × 𝟒 DES matrix of 

𝜞𝑫𝟖
[𝑮𝟐] with the non-diagonal entries are 𝟏𝟏 + 𝟏𝟏 = 𝟐, 

while the diagonal entries are zero. Then, we get 

 

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟐]) = [

𝟎 𝟐 𝟐 𝟐
𝟐 𝟎 𝟐 𝟐
𝟐 𝟐 𝟎 𝟐
𝟐 𝟐 𝟐 𝟎

]. 

 

Additionally, the characteristic polynomial of 

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟐]) is 𝑷𝑫𝑬𝑺(𝜞𝑫𝟖

[𝑮𝟐])(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟒 −

𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟐])) = (𝝀 + 𝟐)𝟑(𝝀 − 𝟔). It implies that the 

eigenvalues of 𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟐]) are 𝝀 = −𝟐 with multiplicity 

3 and a single 𝝀 = 𝟔. Therefore, 𝑬𝑫𝑬𝑺(𝜞𝑫𝟖
[𝑮𝟐]) = 𝟑|−𝟐| +

|𝟔| = 𝟏𝟐 = 𝟒(𝟒 − 𝟏). 

 

Example 4. In Figure 2, we have presented the commuting 

graph of 𝑫𝟏𝟎. For 𝑿 = 𝑮𝟏, we have a 𝟒 × 𝟒 DES matrix of 

𝜞𝑫𝟏𝟎
[𝑮𝟏] with the non-diagonal entries are 𝟑𝟑 + 𝟑𝟑 = 𝟓𝟒, 

while the diagonal entries are zero. We then obtain 

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟏] ) = [

𝟎 𝟓𝟒 𝟓𝟒 𝟓𝟒
𝟓𝟒 𝟎 𝟓𝟒 𝟓𝟒
𝟓𝟒 𝟓𝟒 𝟎 𝟓𝟒
𝟓𝟒 𝟓𝟒 𝟓𝟒 𝟎

] 
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Furthermore, the characteristic polynomial of 

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟏] ) is 𝑷𝑫𝑬𝑺(𝜞𝑫𝟏𝟎

[𝑮𝟏] )(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟒 −

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟏])) = (𝝀 + 𝟓𝟒)𝟑(𝝀 − 𝟏𝟔𝟐). It implies that the 

eigenvalues of 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟏]) are 𝝀 = −𝟓𝟒 with 

multiplicity 3 and a single 𝝀 = 𝟏𝟔𝟐. Therefore, the DES 

energy of 𝜞𝑫𝟏𝟎
[𝑮𝟏] is 𝑬𝑫𝑬𝑺(𝜞𝑫𝟏𝟎

[𝑮𝟏]) = 𝟑|−𝟓𝟒| + |𝟏𝟔𝟐| =

𝟑𝟐𝟒 = 𝟒(𝟓 − 𝟐)𝟓−𝟏. 

Additionally, for 𝑿 = 𝑮𝟐, we have a 𝟓 × 𝟓 DES matrix of 

𝜞𝑫𝟏𝟎
[𝑮𝟐]  with the non-diagonal entries are 𝟎𝟎 + 𝟎𝟎 = 𝟐, 

and the diagonal entries are zero. We then obtain 

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟐] ) =

[
 
 
 
 
𝟎 𝟐 𝟐 𝟐 𝟐
𝟐 𝟎 𝟐 𝟐 𝟐
𝟐 𝟐 𝟎 𝟐 𝟐
𝟐 𝟐 𝟐 𝟎 𝟐
𝟐 𝟐 𝟐 𝟐 𝟎]

 
 
 
 

 

Hence, the characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟐]) 

is 𝑷𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟐])(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟓 − 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎

[𝑮𝟐])) = (𝝀 +

𝟐)𝟒(𝝀 − 𝟖). It implies that the eigenvalues of 

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟐]) are 𝝀 = −𝟐 with multiplicity 4 and 𝝀 = 𝟖 

with multiplicity 1. Therefore, 𝑬𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
[𝑮𝟐]) = 𝟒|−𝟐| +

|𝟖| = 𝟏𝟔 = 𝟒(𝟓 − 𝟏). 

 

Theorem 3.4: Let 𝜞𝑫𝟐𝒏
 be the commuting graph of 𝑫𝟐𝒏. 

Then, the characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) is 

1. 𝑃𝐷𝐸𝑆(𝛤𝐷2𝑛)(𝜆) = (𝜆 + 2(𝑛 − 2)(𝑛−2))
𝑛−2

(𝜆 + 2)𝑛−1(𝜆2 −

(2(𝑛 − 1) + 2(𝑛 − 2)𝑛−1)𝜆 + 4(𝑛 − 2)𝑛−1(𝑛 − 1) −
𝑛(𝑛 − 1)), for 𝑛 is odd, while 

2. 𝑃𝐷𝐸𝑆(𝛤𝐷2𝑛)(𝜆) = (𝜆 + 2(𝑛 − 3)(𝑛−3))
𝑛−3

(𝜆 + 2)𝑛−1(𝜆2 −

(2(𝑛 − 1) + 2(𝑛 − 3)𝑛−2)𝜆 + 4(𝑛 − 1)(𝑛 − 3)𝑛−2 −
𝑛(𝑛 − 2)3), for 𝑛 is even. 

 

Proof. 

1. When 𝒏 is odd, from Theorem 3.1, we have 𝒅𝒂𝒊 = 𝒏 − 𝟐 

and 𝒅𝒂𝒊𝒃 = 𝟎, for all 𝟏 ≤ 𝒊 ≤ 𝒏. Then, using the fact that 

𝒁(𝑫𝟐𝒏) = {𝒆}, we have 𝟐𝒏 − 𝟏 vertices in 𝜞𝑫𝟐𝒏
. The set 

of vertices consists of 𝒏 − 𝟏 vertices of the form 𝒂𝒊, for 

𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏, and 𝒏 vertices of the form 𝒂𝒊𝒃, for 𝟏 ≤

𝒊 ≤ 𝒏. Consequently, the DES matrix for 𝜞𝑫𝟐𝒏
 is a (𝟐𝒏 −

𝟏) × (𝟐𝒏 − 𝟏) matrix, 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = [𝒅𝒆𝒔𝒑𝒒] whose 

entries are: 

(i)   𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟐)𝒏−𝟐 + (𝒏 − 𝟐)𝒏−𝟐 = 𝟐(𝒏 − 𝟐)𝒏−𝟐, 

for 𝒑 ≠ 𝒒, and 𝟏 ≤ 𝒑, 𝒒 ≤ 𝒏 − 𝟏, 

(ii)  𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟐)𝟎 + (𝟎)𝒏−𝟐 = 𝟏, for 𝟏 ≤ 𝒑 ≤ 𝒏 − 𝟏 

and 𝒏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟏, 

(iii) 𝒅𝒆𝒔𝒑𝒒 = (𝟎)𝒏−𝟐 + (𝒏 − 𝟐)𝟎 = 𝟏, for 𝒏 ≤ 𝒑 ≤ 𝟐𝒏 − 𝟏 

and 𝟏 ≤ 𝒒 ≤ 𝒏 − 𝟏, 

(iv) 𝒅𝒆𝒔𝒑𝒒 = (𝟎)𝟎 + (𝟎)𝟎 = 𝟐, for 𝒑 ≠ 𝒒, 𝒏 ≤ 𝒑 ≤ 𝟐𝒏 −

𝟏 and 𝒏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟏, 

(v)  𝒅𝒆𝒔𝒑𝒒 = 𝟎, for 𝒑 = 𝒒. 

 

We can construct 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) as follows: 

𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
)

=

[
 
 
 
 
 
 
 

𝟎 𝟐(𝒏 − 𝟐)(𝒏−𝟐) ⋯ 𝟐(𝒏 − 𝟐)(𝒏−𝟐) 𝟏 𝟏 ⋯ 𝟏

𝟐(𝒏 − 𝟐)(𝒏−𝟐) 𝟎 ⋯ 𝟐(𝒏 − 𝟐)(𝒏−𝟐) 𝟏 𝟏 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟐(𝒏 − 𝟐)(𝒏−𝟐) 𝟐(𝒏 − 𝟐)(𝒏−𝟐) ⋯ 𝟎 𝟏 𝟏 ⋯ 𝟏
𝟏 𝟏 ⋯ 𝟏 𝟎 𝟐 ⋯ 𝟐
𝟏 𝟏 ⋯ 𝟏 𝟐 𝟎 ⋯ 𝟐
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟏 𝟐 𝟐 ⋯ 𝟎]

 
 
 
 
 
 
 

 

 

= [
2(𝑛 − 2)(𝑛−2)(𝐽𝑛−1 − 𝐼𝑛−1) 𝐽(𝑛−1)×𝑛

𝐽𝑛×(𝑛−1) 2(𝐽𝑛 − 𝐼𝑛)
] 

= [
𝑇1 𝑇2

𝑇3 𝑇4
]. 

 

In the current case, 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) is divided into four 

blocks, where the first block is 𝑻𝟏, which is a block of 

(𝒏 − 𝟏) × (𝒏 − 𝟏) matrix with zero diagonal and all non-

diagonal entries as 𝟐(𝒏 − 𝟐)(𝒏−𝟐). In the next two blocks, 

we have 𝑻𝟐 and 𝑻𝟑 matrices, which are of the size 

(𝒏 − 𝟏) × 𝒏 and 𝒏 × (𝒏 − 𝟏), respectively, whose all 

entries are equal to one. The last block is 𝑻𝟒, which is an 

𝒏 × 𝒏 matrix with zero diagonal, and all non-diagonal 

entries are equal to two. Then, we obtain the 

characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) from the 

following determinant 

𝑷𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
)(𝝀) = |𝝀𝑰𝟐𝒏−𝟏 − 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏

)| 

= |
(𝝀 + 𝟐(𝒏 − 𝟐)(𝒏−𝟐))𝑰𝒏−𝟏 − 𝟐(𝒏 − 𝟐)(𝒏−𝟐)𝑱𝒏−𝟏 −𝑱(𝒏−𝟏)×𝒏

− 𝑱𝒏×(𝒏−𝟏) (𝝀 + 𝟐)𝑰𝒏 − 𝟐𝑱𝒏

| 

. 

By using Lemma 2.1, with 𝒂 = 𝟐(𝒏 − 𝟐)(𝒏−𝟐), 𝒃 = 𝟐, 𝒄 =

𝟏, 𝒅 = 𝟏, 𝒏𝟏 = 𝒏 − 𝟏 and 𝒏𝟐 = 𝒏, we get the required 

result. 

 

2. When 𝒏 is even, using Theorem 3.1, we know that 𝒅𝒂𝒊 =

𝒏 − 𝟑 and 𝒅𝒂𝒊𝒃 = 𝟏, for all 𝟏 ≤ 𝒊 ≤ 𝒏. Then, using the 

fact that 𝒁(𝑫𝟐𝒏) = {𝒆, 𝒂
𝒏
𝟐}, we have 𝟐𝒏 − 𝟐 vertices in 

𝜞𝑫𝟐𝒏
. The set of vertices consists of 𝒏 − 𝟐 vertices of the 

form 𝒂𝒊, with 𝒊 ≠ 𝒏,
𝒏

𝟐
 and 𝒏 vertices of the form 𝒂𝒊𝒃, for 

𝟏 ≤ 𝒊 ≤ 𝒏. Correspondingly, the DES matrix for 𝜞𝑫𝟐𝒏
 is a 

(𝟐𝒏 − 𝟐) × (𝟐𝒏 − 𝟐) matrix, 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = [𝒅𝒆𝒔𝒑𝒒] 

whose entries are: 

(i)   𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟑)𝒏−𝟑 + (𝒏 − 𝟑)𝒏−𝟑 = 𝟐(𝒏 − 𝟑)𝒏−𝟑, 

for 𝒑 ≠ 𝒒, and 𝟏 ≤ 𝒑, 𝒒 ≤ 𝒏 − 𝟐, 

(ii)  𝒅𝒆𝒔𝒑𝒒 = (𝒏 − 𝟑)𝟏 + (𝟏)𝒏−𝟑 = 𝒏 − 𝟐, for 𝟏 ≤ 𝒑 ≤

𝒏 − 𝟐 and 𝒏 − 𝟏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟐, 

(iii) 𝒅𝒆𝒔𝒑𝒒 = (𝟏)𝒏−𝟑 + (𝒏 − 𝟑)𝟏 = 𝒏 − 𝟐, for 𝒏 − 𝟏 ≤

𝒑 ≤ 𝟐𝒏 − 𝟐 and 𝟏 ≤ 𝒒 ≤ 𝒏 − 𝟐, 

(iv) 𝒅𝒆𝒔𝒑𝒒 = (𝟏)𝟏 + (𝟏)𝟏 = 𝟐, for 𝒑 ≠ 𝒒, 𝒏 − 𝟏 ≤ 𝒑 ≤

𝟐𝒏 − 𝟐 and 𝒏 − 𝟏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟐, 

(v)  𝒅𝒆𝒔𝒑𝒒 = 𝟎, for 𝒑 = 𝒒. 

 

We can construct 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) as the following: 
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[
 
 
 
 
 
 
 

𝟎 𝟐(𝒏 − 𝟑)(𝒏−𝟑) ⋯ 𝟐(𝒏 − 𝟑)(𝒏−𝟑) 𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐

𝟐(𝒏 − 𝟑)(𝒏−𝟑) 𝟎 ⋯ 𝟐(𝒏 − 𝟑)(𝒏−𝟑) 𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟐(𝒏 − 𝟑)(𝒏−𝟑) 𝟐(𝒏 − 𝟑)(𝒏−𝟑) ⋯ 𝟎 𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐
𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐 𝟎 𝟐 ⋯ 𝟐
𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐 𝟐 𝟎 ⋯ 𝟐

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝒏 − 𝟐 𝒏 − 𝟐 ⋯ 𝒏 − 𝟐 𝟐 𝟐 ⋯ 𝟎 ]

 
 
 
 
 
 
 

 

= [
𝟐(𝒏 − 𝟑)(𝒏−𝟑)(𝑱𝒏−𝟐 − 𝑰𝒏−𝟐) (𝒏 − 𝟐)𝑱(𝒏−𝟐)×𝒏

(𝒏 − 𝟐)𝑱𝒏×(𝒏−𝟐) 𝟐(𝑱𝒏 − 𝑰𝒏)
] 

= [
𝑼𝟏 𝑼𝟐

𝑼𝟑 𝑼𝟒
].  

 

In the current case, 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) is divided into four 

blocks, where the first block we have 𝑼𝟏 which is a block 

of (𝒏 − 𝟐) × (𝒏 − 𝟐) matrix with zero diagonal and all 

non-diagonal entries as 𝟐(𝒏 − 𝟑)(𝒏−𝟑). The next two 

blocks are 𝑼𝟐 and 𝑼𝟑, which are of the size (𝒏 − 𝟐) × 𝒏  

and 𝒏 × (𝒏 − 𝟐), respectively, whose all entries are 

equal to 𝒏 − 𝟐. The last block is 𝑼𝟒, which is an 𝒏 × 𝒏 

matrix with zero diagonal, and all non-diagonal entries 

are equal to two. Then, we obtain the characteristic 

polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) from the following 

determinant 

𝑷𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
)(𝝀) = |𝝀𝑰𝟐𝒏−𝟐 − 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏

)| 

= |
(𝝀 + 𝟐(𝒏 − 𝟑)(𝒏−𝟑))𝑰𝒏−𝟐 − 𝟐(𝒏 − 𝟑)(𝒏−𝟑)𝑱𝒏−𝟐 −(𝒏 − 𝟐)𝑱(𝒏−𝟐)×𝒏

−(𝒏 − 𝟐)𝑱𝒏×(𝒏−𝟐) (𝝀 + 𝟐)𝑰𝒏 − 𝟐𝑱𝒏

|. 

By using Lemma 2.1, with 𝒂 = 𝟐(𝒏 − 𝟑)(𝒏−𝟑), 𝒃 = 𝟐, 𝒄 =

𝒏 − 𝟐, 𝒅 = 𝒏 − 𝟐, 𝒏𝟏 = 𝒏 − 𝟐 and 𝒏𝟐 = 𝒏, we obtain 

the result.     

         

The illustration of the above theorem is given by the 

following examples for 𝒏 = 𝟒 and 𝒏 = 𝟓. 

 

Example 5. In Example 1, we obtained the commuting graph 

of 𝑫𝟖. Since the degree of each vertex is one, then we will 

have a 𝟔 × 𝟔 DES matrix of 𝜞𝑫𝟖
 as follows: 

𝑫𝑬𝑺(𝜞𝑫𝟖
) =

[
 
 
 
 
 
𝟎 𝟐 𝟐 𝟐 𝟐 𝟐
𝟐 𝟎 𝟐 𝟐 𝟐 𝟐
𝟐 𝟐 𝟎 𝟐 𝟐 𝟐
𝟐 𝟐 𝟐 𝟎 𝟐 𝟐
𝟐 𝟐 𝟐 𝟐 𝟎 𝟐
𝟐 𝟐 𝟐 𝟐 𝟐 𝟎]

 
 
 
 
 

. 

Hence, the characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟖
)  is 

𝑷𝑫𝑬𝑺(𝜞𝑫𝟖
)(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟔 − 𝑫𝑬𝑺(𝜞𝑫𝟖

)) = (𝝀 + 𝟐)(𝝀 +

𝟐)𝟑(𝝀𝟐 − 𝟖𝝀 − 𝟐𝟎) = (𝝀 + 𝟐)𝟓(𝝀 − 𝟏𝟎). Using MapleTM, 

we confirmed that the eigenvalues of 𝑫𝑬𝑺(𝜞𝑫𝟖
) are 𝝀 = −𝟐 

with multiplicity 5 and a single 𝝀 =10. Therefore, 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟖
) = 𝟓|−𝟐| + |𝟏𝟎| = 𝟐𝟎. 

 

Example 6. In Example 2, we have presented the commuting 

graph of 𝑫𝟏𝟎. Then, we have a 𝟗 × 𝟗 DES matrix of 𝜞𝑫𝟏𝟎
 as 

follows:  

𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
) =

[
 
 
 
 
 
 
 
 
𝟎 𝟓𝟒 𝟓𝟒 𝟓𝟒 𝟏 𝟏 𝟏 𝟏 𝟏
𝟓𝟒 𝟎 𝟓𝟒 𝟓𝟒 𝟏 𝟏 𝟏 𝟏 𝟏
𝟓𝟒 𝟓𝟒 𝟎 𝟓𝟒 𝟏 𝟏 𝟏 𝟏 𝟏
𝟓𝟒 𝟓𝟒 𝟓𝟒 𝟎 𝟏 𝟏 𝟏 𝟏 𝟏
𝟏 𝟏 𝟏 𝟏 𝟎 𝟐 𝟐 𝟐 𝟐
𝟏 𝟏 𝟏 𝟏 𝟐 𝟎 𝟐 𝟐 𝟐
𝟏 𝟏 𝟏 𝟏 𝟐 𝟐 𝟎 𝟐 𝟐
𝟏 𝟏 𝟏 𝟏 𝟐 𝟐 𝟐 𝟎 𝟐
𝟏 𝟏 𝟏 𝟏 𝟐 𝟐 𝟐 𝟐 𝟎]

 
 
 
 
 
 
 
 

. 

 

Hence, the characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
) is 

𝑷𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
)(𝝀) = 𝐝𝐞𝐭 (𝝀𝑰𝟗 − 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎

)) = (𝝀 +

𝟓𝟒)𝟑 (𝝀 + 𝟐)𝟒(𝝀𝟐 − 𝟏𝟕𝟎𝝀 + 𝟏𝟐𝟕𝟔). Using MapleTM, we 

confirmed that the eigenvalues of 𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
) are 𝝀 = −𝟓𝟒 

with multiplicity 3, 𝝀 = −𝟐 with multiplicity 4 and 𝝀 = 𝟖𝟓 ±

𝟑√𝟔𝟔𝟏. Thus, 𝑬𝑫𝑬𝑺(𝜞𝑫𝟏𝟎
) = 𝟑|−𝟓𝟒| + 𝟒|−𝟐| + |𝟖𝟓 +

𝟑√𝟔𝟔𝟏| + |𝟖𝟓 − 𝟑√𝟔𝟔𝟏| = 𝟑𝟒𝟎. 

 

Theorem 3.5: Let 𝜞𝑫𝟐𝒏
 be the commuting graph of 𝑫𝟐𝒏. Then 

1. for the odd 𝒏,  

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = 𝟒(𝒏 − 𝟐)𝒏−𝟏 + 𝟒(𝒏 − 𝟏), 

2. and for the even 𝒏, 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = {

𝟐𝟎,                                           𝐢𝐟 𝒏 = 𝟒 

𝟒(𝒏 − 𝟑)𝒏−𝟐 + 𝟒(𝒏 − 𝟏), 𝐢𝐟 𝒏 > 𝟒
. 

 

Proof. 

1. By Theorem 3.4 (1) for the odd 𝒏, the characteristic 

polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) has four eigenvalues, with the 

first eigenvalue is 𝝀𝟏 = −𝟐(𝒏 − 𝟐)𝒏−𝟐 of multiplicity 𝒏 −

𝟐, and the second eigenvalue is 𝝀𝟐 = −𝟐 of multiplicity 

𝒏 − 𝟏. The quadratic formula gives the other two 

eigenvalues, which are 𝝀𝟑, 𝝀𝟒 = (𝒏 − 𝟐)𝒏−𝟏 + (𝒏 − 𝟏) ±

√((𝒏 − 𝟐)𝒏−𝟏 − (𝒏 − 𝟏))
𝟐
+ 𝒏(𝒏 − 𝟏), and both of 

them are positive real numbers. Hence, the DES energy 

for 𝜞𝑫𝟐𝒏
 is 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = (𝒏 − 𝟐)|−𝟐(𝒏 − 𝟐)𝒏−𝟐| + (𝒏 − 𝟏)|−𝟐| 

+|(𝒏 − 𝟐)𝒏−𝟏 + (𝒏 − 𝟏)

± √((𝒏 − 𝟐)𝒏−𝟏 − (𝒏 − 𝟏))
𝟐
+ 𝒏(𝒏 − 𝟏)  | 

= 𝟐(𝒏 − 𝟐)𝒏−𝟏 + 𝟐(𝒏 − 𝟏) + 𝟐(𝒏 − 𝟐)𝒏−𝟏 + 𝟐(𝒏 − 𝟏) 

= 𝟒(𝒏 − 𝟐)𝒏−𝟏 + 𝟒(𝒏 − 𝟏). 

 

2. By Theorem 3.4 (2) for the even 𝒏, the characteristic 

polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) has four eigenvalues, with the 

first eigenvalue is 𝝀𝟏 = −𝟐(𝒏 − 𝟑)𝒏−𝟑 of multiplicity 𝒏 −

𝟑, and the second eigenvalue is 𝝀𝟐 = −𝟐 of multiplicity 

𝒏 − 𝟏. The quadratic formula gives the other two 

eigenvalues, which leads to two cases. First, when 𝒏 = 𝟒, 

they are a positive real number, and the other is negative. 

It is evident from Example 5 that 𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = 𝟐𝟎. 

Meanwhile, for 𝒏 > 𝟒, the last two eigenvalues are 

positive real numbers given by 𝝀𝟑, 𝝀𝟒 = (𝒏 − 𝟑)𝒏−𝟐 +
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(𝒏 − 𝟏) ± √((𝒏 − 𝟑)𝒏−𝟐 − (𝒏 − 𝟏))
𝟐
+ 𝒏(𝒏 − 𝟐)𝟑. 

Thus, the DES energy for 𝜞𝑫𝟐𝒏
 is 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = (𝒏 − 𝟑)|−𝟐(𝒏 − 𝟑)𝒏−𝟑| + (𝒏 − 𝟏)|−𝟐| 

+|(𝒏 − 𝟑)𝒏−𝟐 + (𝒏 − 𝟏)

± √((𝒏 − 𝟑)𝒏−𝟐 − (𝒏 − 𝟏))
𝟐
+ 𝒏(𝒏 − 𝟐)𝟑| 

= 𝟒(𝒏 − 𝟑)𝒏−𝟐 + 𝟒(𝒏 − 𝟏).     

   

4. Conclusion 
 

This paper has given the general formula of degree 

exponent sum (DES) energy of commuting graphs for 

dihedral groups. In particular, 𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = 𝟒(𝒏 − 𝟐)𝒏−𝟏 +

𝟒(𝒏 − 𝟏) when 𝒏 is odd. On the other hand, there are two 

cases for 𝒏 is even, namely 𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = 𝟐𝟎 if 𝒏 = 𝟒 and 

𝑬𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
) = 𝟒(𝒏 − 𝟑)𝒏−𝟐 + 𝟒(𝒏 − 𝟏) if 𝒏 > 𝟒. This 

happens as a result of the difference between the quadratic 

polynomial roots, which is a part of the corresponding 

characteristic polynomial of 𝑫𝑬𝑺(𝜞𝑫𝟐𝒏
). 
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