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Abstract: Numerical methods are widely used to study the solution of singularly perturbed equations. At the same time, their application 
to the solution of such equations encounters serious difficulties; they are associated with the presence of a small parameter at the highest 
derivative and the appearance in the solution area of areas with high frequency-amplitude sawtooth jumps. In this case, the requirements 
for the efficiency and accuracy of numerical methods increase sharply. Although numerous methods have been developed to date, the 
question of the effectiveness and accuracy of numerical methods remains open. Until now, different methods with uniform and non-
uniform steps have been mainly used to solve singularly perturbed equations. As the value of the small parameter decreases, to increase 
the accuracy, it is necessary to refine the step of the difference grid. This, in turn, leads to a strong increase in the order of the matrix in 
the linear algebraic system being solved. Along with difference methods, spectral methods can be used to solve problems. In spectral 
methods, the solution to the equation is sought in the form of finite series in Chebyshev polynomials. The derivatives present in the 
equation are determined by differentiating the selected final series. When differentiating series, the order of the approximating 
polynomials is reduced, and this, in turn, affects the accuracy of the method used. In this paper, it is proposed to use the preliminary 
integration method to solve singularly perturbed equations. The essence of this method is as follows. The highest derivative and the right-
hand side of the differential equation are expanded into finite series in Chebyshev polynomials of the first kind. Unlike spectral methods, 
in the preliminary integration method the highest derivative is expanded into a finite series. Before solving the problem, the series for the 
highest derivative is preliminarily integrated until an expression for solving the problem is found in the form of a finite series. When 
integrating series, unknown integration constants appear; they are determined from additional conditions of the problem. Only after this, 
the series for solving the derivatives of the right side are put into a singularly perturbed equation and a system of linear algebraic equations 
is obtained for determining the unknown expansion coefficients. It should be noted that when integrating series, the smoothness of the 
approximating polynomials improves, and this, in turn, increases the accuracy of the proposed method. At the same time, the order of 
the matrix of the algebraic system being solved does not increase. This ensures, at the same costs required in the spectral method, that 
the proposed method can solve a singularly perturbed equation even for small values of the small parameter of the problem. The high 
accuracy and efficiency of the preliminary integration method are demonstrated when solving a specific inhomogeneous singularly 
perturbed equation. The results of calculations are presented by comparing the approximate solution with the exact solution of the 
problem and with approximate solutions obtained by the spectral method. 
 
Keywords: Inhomogeneous differential equation, boundary value problem, Chebyshev polynomials, preliminary integration, absolute 
error. 

 
1. Introduction 

The construction of highly accurate and efficient methods for 
solving inhomogeneous singularly perturbed equations is an 
urgent problem in applied mathematics. 

Let us briefly describe numerical methods aimed at solving 
singularly perturbed equations. 

In [1], a finite-difference method for solving a singularly 
perturbed equation was proposed. The essence of this method is 

to replace the derivatives included in the equation with finite 
differences and solve the resulting system using linear algebra 
methods. Such a difference scheme requires a fairly fine grid step. 
When the value of the small parameter is on the order of 10-4, a 
uniform grid of 100 nodes is used to obtain sufficiently accurate 
(10-3) results. In [2], in order to reduce the number of grid nodes, 
it is proposed to use a difference grid with a variable step. 
However, such a grid depends on several parameters, the choice 
of which encounters certain difficulties. A technique for 
constructing a non-uniform mesh for the numerical solution of a 
singularly perturbed equation was proposed in [3]. In [4], this 
method was used to solve the eigenvalue problem for an equation 
with a small parameter at the highest derivative, i.e., for the Orr–
Sommerfeld equation. The results of the numerical solution of the 
Orr-Sommerfeld equation using a non-uniform mesh are 
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presented in [5]. In [6], the results of constructing a non-uniform 
mesh for solving the Orr-Sommerfeld equation are presented, 
and the spectrum of eigenvalues for the Poiseuille flow is 
calculated. The numerical solution of the Orr-Sommerfeld 
equation using two-dimensional grids is presented in [7]. 
However, strict conditions are imposed on the parameters of such 
a grid to correctly describe the hydrodynamic properties of the 
flow. In [8], an inhomogeneous singularly perturbed second-order 
equation is solved by the spectral method. Numerical modeling of 
a fourth-order inhomogeneous singularly perturbed equation 
using the spectral method is presented in [9]. In the monograph 
[10], it is proposed to use the spectral grid method for numerical 
modeling of single-phase and two-phase flows. In this work, the 
convergence of the method is proved, and estimates of the speed 
of convergence of the method are obtained. The numerical 
solution of the Orr-Sommerfeld equation using the spectral-grid 
method is presented in [11]. The work shows the effectiveness 
and high accuracy of the proposed method. In [12], a spectral grid 
method is used to study the hydrodynamic stability of two-phase 
flows. In the two-phase flow under consideration, the dispersion 
(carrying) phase is gas, and the dispersed phase is solid particles. 
Numerical modeling of the Navier-Stokes equations in the system 
of a vortex and stream function using difference methods with a 
combination of Chebyshev polynomials of the first kind is 
presented in [13]. In [14], nonlinear waves with dissipation are 
numerically simulated by the spectral grid method. In [15], the 
convergence of the spectral-grid method was proved and 
estimates of the rate of convergence of the method were 
obtained for the Burgers equation with initial boundary 
conditions, where Chebyshev polynomials of the first kind were 
used. A review of methods for solving the problem of 
hydrodynamic stability is presented in [16]. In [17], the 
preliminary integration method was used to numerically simulate 
the eigenvalue problem of two-phase hydrodynamic flows. 

A study of the cited literature and other sources shows that 
Chebyshev polynomials are widely used to study equations with a 
small parameter at the highest derivative. From the above review, 
it is clear that to solve the eigenvalue problem for a single-phase 
flow (Orr-Sommerfeld equation) and two-phase flow described by 
the eigenvalue problem for a system of nonlinear ordinary 
differential equations with a small parameter at the highest 
derivative, spectral and spectral-grid methods are successfully 
used.  

From the above review, it is clear that works [1-7] are devoted 
to solving equations with a small parameter with the highest 
derivative using difference methods on uniform and non-uniform 
meshes. The following works are devoted to the use of spectral 
methods for the numerical solution of singularly perturbed 
equations of the second order [8] and fourth order [9]. In works 
[10-15], the spectral grid method was used for the numerical 
modeling of equations with a small parameter at the highest 
derivative. Numerical modeling of a singularly perturbed equation 
and a system of such equations using the preliminary integration 
method is presented in [16-17].  

In difference methods, the derivatives included in the equation 
are replaced by finite differences, and the difference grid is 
constructed using a special transformation. 

In spectral and spectral-grid methods, the solution to the 
equation is expanded into a finite series in Chebyshev 
polynomials. The derivatives present in a singularly perturbed 
equation are found by differentiating the selected finite series. It 
should be noted that when differentiating a series, the order of 
the approximating polynomials decreases (for example, with 
double differentiation, a polynomial of the fourth degree 
becomes a polynomial of the second degree), and this, in turn, 
affects the accuracy of the calculations. In the preliminary 
integration method, in contrast to spectral methods, not the 
solution of the equation, but the highest derivative is expanded 
into a finite series in Chebyshev polynomials. The lower 
derivatives and the solution to the singularly perturbed equation 
are found by preliminary integration of the series for the highest 
derivative. It should be noted that when integrating a finite series, 
the order of the approximating polynomials increases (for 
example, when integrating twice, a polynomial of the second 
degree becomes a polynomial of the fourth degree), the 
polynomials become smoother. We emphasize that both during 
differentiation and integration of a finite series, the order of the 
algebraic system being solved does not increase. 

  
2. Problem Statement 

In this work, to solve the problem posed in [4], the method of 
preliminary integration with polynomials is used. In the pre-
integration method, singularity zones are not identified and do 
not depend on their location. The highest derivative of the 
differential equation and the right-hand side are expanded into a 
series of polynomials. By first integrating the series for the highest 
derivative, expressions for all lower derivatives and the desired 
solution are found in the form of series in polynomials. The 
integration constants that appear in this case are found from the 
conditions for satisfying the corresponding boundary conditions. 
Only after this the necessary series are put into the differential 
equation and a system of equations is obtained regarding the 
coefficients of the expansion of the series for the highest 
derivative. By solving the resulting system, the expansion 
coefficients are determined and placing them in the required 
series, it is possible to determine the values of the solution and its 
derivatives of any order, up to the highest derivative. 

Let it be necessary to solve the following inhomogeneous 
singularly perturbed equation: 

( )
2

2

1 1 1 , ( 1,1) ,
2 8

d u du y y
dy dy

ε + = + ∈ −  (1) 

 
with boundary conditions 

( ) ( )1 1 0,u u− = + =  (2) 

where is ε  is a small parameter. 
 
The trial function of the problem (1) and (2) has the form [4]: 
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( )
( ) ( )21
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1
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2 81

y yyu y
e

ε

ε

ε ε ε
− +

−

+− + = − − + 
 −

 

 
3. Solution Method 

The highest derivative of the differential equation (1) and the 
right part of f(y) are searched for in the form of series: 

( )
2

2
0 0

, ( ) ( ),
N N

j j i i
j i

d u a T y f y bT y
dy = =

= =∑ ∑  (3) 

where ( )jT y are Chebyshev polynomials of the first kind.  

After a two-time preliminary integration of the series (3), we 
have: 

( ) ( ) ( )
1

1
1 0

0 0
,

N N

ji i j
j i

du f a T y C T y
dy

+

= =

= +∑∑  (4) 

 

( ) ( ) ( ) ( ) ( )
2

0
1 1 2 0

0 0
,

N N

ji i j
j i

u y f a T y C T y C T y
+

= =

= + +∑∑  (5) 

 

where  1 2,  C C  are unknown integration constants. To 

determine them, we use the boundary conditions (2) and use the 

following properties of polynomials: ( ) ( )1 1 n
nT ± = ± . 

Then, we have: 
 

( ) ( )
2

0
1 2

0 0
1 0,

N N

ji i
j i

u f a C C
+

= =

+ = + + =∑∑  (6) 

 

( ) ( ) ( )
2

0
1 2

0 0
1 1 0.

N N
j

ji i
j i

u f a C C
+

= =

− = − − + =∑∑  (7) 

Adding equation (6) and (7), we get 
 

 ( ) ( ) ( ) ( ) ( )
2 2

0 0
2

0 0 0 0
1 1 1 2 0.

N N N N
j

ji i ji i
j i j i

u u f a f a C
+ +

= = = =

+ + − = + − + =∑∑ ∑∑  

 

From here, we define the constant 2C  as follows: 

 

( ) ( ) ( )
2

0 0
2

0 0

1 1
2

N N
j

ji ji i
i j

C f f a
+

= =

 
= − + − 

 
∑ ∑ . 

 
Similarly, subtracting equation (7) from equation (6), we 

determine the constant 1C  : 

 

( ) ( ) ( )
2 2

0 0
1 ,

0 0 0

1 1
2

N N N
j

ji ji i
i j j

C f f a
+ +

= = =

  
= − −  

   
∑ ∑ ∑  

We now introduce the following notation: 
2 2

(0) (0) (0) (0)

0 0
, ( 1) .

N N
j

i ji i ji
j j

f fδ δ
+ +

= =

= = −∑ ∑  

Then, the expressions for constants 1C and 2C have the 

following form:  
 

(8) 

 

( ) ( )0 0
2 .

0

1
2

N

i i i
i

C aδ δ
=

 = − + ∑  (9) 

 
Formulas (4) and (5), considering constants (7) and (9), are 

written in the following general form: 
 

( ) ( )
2

( )

0 0
( ), 0,1,

N N

ji i j
j i

u y g a T y
β

β β β
+ −

= =

= =∑ ∑  (10) 

 
where 
 

( ) ( )( )0 0(1) (1)
,0

1 ,
2ji ji j i ig f δ δ δ= + −  (11) 

 

( ) ( )( ) ( ) ( )( )0 0 0 0(0) (0)
,1 ,0

1 1 .
2 2ji ji j i i j i ig f δ δ δ δ δ δ= + − − −  (12) 

 
Here, 

1, ,
0, ,ij

if i j
if i j

δ
=

=  ≠
 denotes the Kronecker symbol. 

 
Finally, substituting series (3) and (10) into (1) and equating the 

coefficients for the same degrees of polynomials, we obtain the 
following linear algebraic system for determining the expansion 

coefficients 0, 1 2..., :na a a a  

 

(1)

0

1 , 0,1, 2,..., .
2

n

ik ik k i
k

g a b i nεδ
=

 + = =  
∑  (13) 

  
The right part of the system (13) is defined as follows: 
It is known that 
  

( ) ( )
0

1( ) 1 .
8

N

i i
i

f y y bT y
=

= + =∑  (14) 

 

( ) ( )0 0
1 ,

0

1
2

N

i i i
i

C aδ δ
=

 = + ∑
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Hence, the coefficients in formula (14) are determined by the 
following inverse transformation [9-12]: 

 ( ) ( )
0

2 1 , 0,1,..., ,
N

i l i l
li l

b f y T y i N
Nc c=

= =∑  

or 

 ( ) ( )
0

2 1 1 , 0,1,..., ,
8

N

i l i l
li l

b y T y i N
Nc c=

= + =∑  

where 0 12, 1, 0;Nc c c if l N= = = ≠ , cosl
ly

N
π

=   

is the collocation nodes for Chebyshev polynomials of the first 
kind. 

 
Here is an algorithm for calculating constants [16-17]: 
 

( )
2 2

( ) ( ) ( ) ( )

0 0
, 1 , 0,1,

N N
j

i ji i ji
j j

f f
β β

β β β βδ δ β
+ − + −

= =

= = − =∑ ∑  

where 
( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1
, 1 , 1

0 0 0 0
, 2 , , 2

,

.
ji j i i j i i

ji j i i j i i j i i

f

f

δ β δ ζ

δ β δ ζ δ µ
+ −

+ −

= +

= + +
 

Here, constants , ,β ζ µ are calculated as follows: 

 

( )

( )
( )

( )

( )
( )

( )
( )

( ) ( )

( )

( )

1
1 0

1 1
1 0

1
0

, 0, , 0,
2 1 2 2

1 , 2, , 1,
2 1 2

, 3.
2 2

i i
i i

i i
i i

i
i

c i i
i i

i i
i i

i
i

ββ β

ζ βζ ζ

ζµ

= ≥ = ≥
+ +

−−
= ≥ = ≥

−

−
= ≥

−

 

 

4. Discussion of The Results 
Let us present the results of numerical calculations obtained by 

the preliminary integration method for solving the boundary 
value problem (1)-(3) when the value of a small parameter is for 
different numbers of polynomials. N=10, 20, 30,40 and 50. 

Table 1 shows the results of the polynomials cosl
ly

N
π

=  

calculated in the nodes 0,1,2,..., ,l N=  when 10.N =  For 

small numbers of polynomials, the influence of a small parameter 
on the dynamics of the numerical solution is observed. In this 
case, high-frequency-amplitude sawtooth jumps appear in the 
numerical solution. At the same time, it should be noted that the 
smaller the value of a small parameterε , the more sawtooth 
jumps appear. 

 

Table 1. Comparison of the trial function and numerical solution 

( 10N = ) 
Nodes  

Yl on l  
eu  - trial 

function 
au - 

numerical 
solution 

 aeu u∆ = −  

error 

3 
5 
7 
9 

-0,4708209 
-0,37 
-0,1828062 
-0,0239276 

0,47920272 
0,5750956 
0,7588535 
0,8996691 

0,9500237 
0,9450956 
0,9416597 
0,9235967 

 
From the results in Table 1, with a small number of polynomials, 

the trial function and numerical solutions are very different. 
These results are clearly presented in Figure 1. 

 
Figure 1. Dynamics of changes in the trial function and numerical 

solution ( 10N = ). 
 

From Figure 1, it can be seen that when approximating a solution 
with a small number of Chebyshev polynomials, sawtooth jumps 
of high amplitude appear. 

Now, we gradually increase the number of approximating 
polynomials. In Table 2, the results obtained by the method of 

preliminary integration when 20N =  with a same value of 

parameter, 210ε −=  are presented. 
 
Table 2. Comparison of trial function and numerical solutions 
Nodes  

Yl on l  
eu  - trial 

function 
au - 

numerical 
solution 

 aeu u∆ = −  

error 

4 
8 
12 
16 

-0,486361 
-0,433773 
-0,282354 
-0,089977 

-0,488502 
-0,435351 
-0,283755 
-0,091128 

0,002141 
0,001579 
0,001401 
0,001151 

 
In Table 2, the numerical solution of the (1)-(3) is found with 

absolute accuracy 110−∆ = . For clarity, the results of Table 2 
are presented graphically in Figure 2. 



 

67 

 

Regular Issue Malaysian Journal of Science 

DOI:https//doi.org/10.22452/mjs.vol44no1.8 

Malaysian Journal of Science 44(1): 63-69 (March 2025) 

 
Figure 2. Dynamics of changes in the trial function and numerical 

solution ( 20N = ). 
 

In Table 2 and Figure 2, the pre-integration method provides 
very fast convergence of the numerical solution since the absolute 
error of the solution decreases sharply. 

The resulting Table 3 shows the relationship between the 
maximum error and approximating polynomials at a value of a 

small parameter, 210ε −= . 
 

Table 3. The relationship between the absolute error and 
polynomials. 

Number of 
polynomials, 
N 

15 20 25 30 35 40 45 50 

Absolute 

error, ∆  

10-

2 

10-

3 

10-

4 

10-

5 

10-

7 

10-

9 

10-

11 

10-

13 

 
According to Table 3, with increasing polynomials, the absolute 

error decreases as a geometric progression. Now, we present the 
results of the calculation when the value of the small parameter 

is 
210 ,ε −=  i.e. 10 times less than the case discussed above. It 

should be noted that almost all of the above methods become 
unsuitable for studying the dynamics of changes in the solution of 

the problem (1)-(2) with this small parameter value of 310ε −=
. In this case, as noted above, high-frequency-amplitude sawtooth 
jumps are clearly manifested in the solution area. In Table 4, the 
results are given when the number of polynomials is equal to 

40N = , 310ε −= . 
 

Table 4. Comparison of the trial function and numerical 

solution ( 40N = ). 

 
It can be seen that with the value of the small parameter of 

310ε −= , the numerical solution is very different from the trial 
function. This is explained by the fact that the number of 

approximating polynomials is not enough to display the dynamics 
of changes in the solution of the problem. 

The results given in Table 4 will be represented graphically in 
Figure 3. 

 
Figure 3. Dynamics of changes in the trial function and numerical 

solution ( 40N = ). 
 

It can be seen that the frequency and amplitude of the sawtooth 
are too high. 

In Table 5, the results of the polynomials are 60N = , 
310ε −= . 

 
Table 5. Comparison of the trial function and numerical solution 

( 60N = ). 
Nodes  

Yl on l  
eu - trial 

function 
au - 

numerical 
solution 

 aeu u∆ = −   

error 

10 
20 
30 
40 
50 

-0,4968 
-0,4680 
-0,3745 
-0,2225 
-0,0647 

-0,5010 
-0,4720 
-0,3785 
-0,2225 
-0,0685 

0,0042 
0,0040 
0,0039 
0,0040 
0,0038 

 
The results in Table 5 are clearly illustrated in Figure 4. 

 
Figure 4. Dynamics of changes in the trial function and numerical 

solution ( 60N = ). 
 
In Figure 4, the amplitude of the sawtooth jumps is significantly 

small, and the maximum error is of the order of 110−∆ = . 
The results of comparing the trial function and numerical 

solution when 100N =  and 310ε −=  are shown in Table 6. 
 
 

Nodes  

Yl on l  
eu  - trial 

function 
au -numerical 

solution 

 

aeu u∆ = −
- error 

15 
25 
35 

-0,451674 
-0,260715 
-0,037298 

0,702899 
0,893573 
1,115398 

1,154572 
1,154287 
1,152696 



 

68 

 

Regular Issue Malaysian Journal of Science 

DOI:https//doi.org/10.22452/mjs.vol44no1.8 

Malaysian Journal of Science 44(1): 63-69 (March 2025) 

Table 6. Comparison of trial function and numerical solutions (

100N = ) 

 
Graphical representations of the results of calculations given in 

Table 6 are shown in Figure 5. 
According to Figure 5, the numerical solution practically 

coincides with the trial function of problem (1)-(2) and with the 

small parameter 310ε −= . The maximum error will be of the 

order of 510−∆ = . 
Here, Table 7 shows th establishing relationship between the 

error and approximating Chebyshev polynomials at a small 

parameter value of 310ε −= . 
 
Table 7. The relationship between the error and polynomials (

310ε −= ) 
Number of 
 polynomials, 
N 

60 70 80 90 100 

Error,∆  10-1 10-2 10-3 10-4 10-5 

 

 
Figure 5. Dynamics of changes in the trial function and numerical 

solution ( 100N = ). 
 

From Table 7, with an increase in the number of approximating 
Chebyshev polynomials, the maximum absolute error decreases 
with the rate of geometric progression and, at the same time, the 
value of a small parameter. All numerical results were obtained 
using a Python program. 

The main criterion for assessing the effectiveness of an arbitrary 
numerical method is the number of arithmetic operations. When 
approximating a singularly perturbed equation by difference and 
spectral or by the preliminary integration method, a system of 
linear algebraic equations is obtained. The order of the matrix in 
a linear algebraic system depends on the number of difference 
grid nodes (N) or the number of polynomials used in finite 
Chebyshev series in the spectral method or the preliminary 
integration method (N). Let us assume that the resulting algebraic 
system is solved by the Gaussian method. It is known that the 
formula calculates the number of arithmetic operations in the 
Gauss method 

32 .
3

Q N=  

Let us compare the effectiveness of the methods used to solve 
a singularly perturbed equation in terms of the number of 
arithmetic operations and accuracy. 

We present the results in Table 8. 
 

Table 8. Comparison of methods in terms of efficiency and 

accuracy at 210ε −= . 
Method Number N  Number of 

arithmetic 
operations Q  

Maximum 
absolute 

error ∆  
Finite-
difference [3] 

20 
50 

5333 
83333 

0.1195 
0.0521 

Spectral [8] 10 
20 
50 

666 
5333 
83333 

0.97 
0.0027 
10-10 

Pre-
integration 
method 

10 
20 
50 

666 
5333 
83333 

0.95 
0.0021 
10-13 

 
From the results given in Table 8 it is clear that the preliminary 

integration method has high accuracy and efficiency. Thus, the 
pre-integration method is a universal and reliable mathematical 
tool for solving a singularly perturbed equation.  

 

5. Conclusion 
i. For the numerical solution of an inhomogeneous 

singularly perturbed equation, a new high-precision and 
efficient method is proposed - the method of 
preliminary integration. 

ii. The inhomogeneous singularly perturbed equation is 
solved by the proposed method for various values of 
the small parameter of the problem. 

iii. Comparison of the obtained results with the exact 
solution of the problem and the approximate solution 
obtained by the spectral method shows the high 
accuracy and efficiency of the preliminary integration 
method. 

iv. Tabular and graphical results illustrating the accuracy 
and efficiency of the method are presented. 

 

Nodes Yl at 

l  
eu  -trial 

function 
au -numerical 

solution 

 

aeu u∆ = −  

Error 
10 
20 
30 
40 
50 
60 
70 
80 
90 

0,498725 
0,494536 
0,477966 
0,439663 
0,374500 
0,285464 
0,184661 
0,090837 
0,024148 

-0,498729 
-0,494539 
-0,477969 
-0,439667 
-0,374503 
-0,285467 
-0,184664 
-0,090839 
-0,024150 

4,14*10-6 

3,30*10-6 

3,09*10-6 
3,00*10-6 
2,96*10-6 
2,92*10-6 
2,86*10-6 
2,72*10-6 
2,18*10-6 
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