
 

70 
 

Regular Issue 

Malaysian Journal of Science 44 (1): 70-86 (March 2025) 

 

https://mjs.um.edu.my  

DOI:https//doi.org/10.22452/mjs.vol44no1.9 
Malaysian Journal of Science 44(1): 70-86 (March 2025) 

 

On the Kronecker Structure of linearization of Cubic Two-Parameter Eigenvalue 
Problems 
Niranjan Bora1a* and Bharati Borgohain2b  
 

 

Abstract: Linearization is a conventional approach to studying matrix polynomials of the form 𝑃𝑃(𝜆𝜆) : = ∑ 𝜆𝜆𝑗𝑗𝑘𝑘
𝑗𝑗=1 𝐴𝐴𝑗𝑗 , where 𝐴𝐴𝑗𝑗 ∈ ℂ𝑛𝑛×𝑛𝑛. It 

converts the matrix polynomial 𝑃𝑃(𝜆𝜆) into a matrix pencil of the form 𝐿𝐿(𝜆𝜆) : = 𝐴𝐴 + 𝜆𝜆𝜆𝜆 of high dimension, where 𝐴𝐴 and 𝜆𝜆 are matrices over 
ℂ, and 𝜆𝜆 is the spectral parameter. In this paper, we consider Cubic two-parameter eigenvalue problems (ℂ𝕋𝕋𝕋𝕋ℙ) and study their three 
different linearization processes. Using linearization techniques, a ℂ𝕋𝕋𝕋𝕋ℙ is first converted into a linear two-parameter eigenvalue 
problem (𝕃𝕃2𝕋𝕋ℙ) with coefficient matrices of different sizes. The main advantage of these linearizations lies in the fact that, after 
transforming them into suitable linearized forms, existing numerical techniques for linear multiparameter eigenvalue problems (𝕃𝕃𝕃𝕃𝕋𝕋ℙ) 
can be applied to solve the ℂ𝕋𝕋𝕋𝕋ℙ without solving the original problem. While solving ℂ𝕋𝕋𝕋𝕋ℙ by formulating suitable linearizations, several 
transformations are generally used. This study reports on these transformations, which have not been studied completely due to the 
complexity of their Kronecker structures. The ranks of the associated Delta matrices are also calculated in a detailed manner to bring out 
the benefits of using the Tracy-Singh product over others. 
 
Keywords: Cubic two-parameter eigenvalue problem, Linear two-parameter eigenvalue problem, linearization, matrix polynomial, Tracy-
Singh product. 

 
1. Introduction 

One-parameter matrix polynomials arise in many physical 
applications and have received significant attention from 
researchers (Dmytryshyn et al., 2020; Fabbender & Saltenberger, 
2018; Gohberg et al., 2009). However, the literature on two-
parameter matrix polynomials remains limited (Hochstenbach et 
al., 2015; Jarlebring et al., 2009). The standard form of a two-
parameter matrix polynomial of degree k is given by 

ℙ(𝜆𝜆, 𝜇𝜇) : = ��𝜆𝜆𝑖𝑖
𝑘𝑘−𝑖𝑖

𝑗𝑗=0

𝑘𝑘

𝑖𝑖=0

𝜇𝜇𝑗𝑗𝑃𝑃𝑖𝑖𝑗𝑗 = �𝕋𝕋𝑗𝑗

𝑘𝑘

𝑗𝑗=0

(𝜆𝜆, 𝜇𝜇), (1) 

where 𝑃𝑃𝑖𝑖𝑗𝑗 ∈ ℂ𝑛𝑛×𝑛𝑛, 𝜆𝜆, 𝜇𝜇 ∈ ℂ are spectral parameters and 𝕋𝕋𝑗𝑗(𝜆𝜆, 𝜇𝜇) 
is a homogeneous matrix polynomial of degree 𝑗𝑗 such that, 

    𝕋𝕋𝑗𝑗(𝜆𝜆, 𝜇𝜇) : = �𝜆𝜆𝑗𝑗−𝑙𝑙
𝑗𝑗

𝑙𝑙=0

𝜇𝜇𝑙𝑙𝑃𝑃𝑗𝑗𝑙𝑙 (2) 

 

The standard form of the Polynomial two-parameter eigenvalue 
problem (ℙ𝕋𝕋𝕋𝕋ℙ), which is the generalization of the Polynomial 
eigenvalue problem (ℙ𝕋𝕋ℙ), comprises two bivariate matrix 
polynomials of the form 

        

ℙ1(𝜆𝜆, 𝜇𝜇)𝑥𝑥1 : = ��𝜆𝜆𝑖𝑖
𝑘𝑘−𝑖𝑖

𝑗𝑗=0

𝑘𝑘

𝑖𝑖=0

𝜇𝜇𝑗𝑗𝐴𝐴𝑖𝑖𝑗𝑗𝑥𝑥1 = 0,

ℙ2(𝜆𝜆,𝜇𝜇)𝑥𝑥2 : = ��𝜆𝜆𝑖𝑖
𝑘𝑘−𝑖𝑖

𝑗𝑗=0

𝑘𝑘

𝑖𝑖=0

𝜇𝜇𝑗𝑗𝜆𝜆𝑖𝑖𝑗𝑗𝑥𝑥2 = 0,

                                  (3) 

where 𝐴𝐴𝑖𝑖𝑗𝑗 ∈ ℂ𝑛𝑛1×𝑛𝑛1; 𝜆𝜆𝑖𝑖𝑗𝑗 ∈ ℂ𝑛𝑛2×𝑛𝑛2 and 𝑥𝑥𝑖𝑖 ∈ ℂ𝑛𝑛𝑖𝑖, 𝑖𝑖 : = 1,2 are 
non zero vectors. The problem is to find the scalars 𝜆𝜆, 𝜇𝜇 ∈ ℂ and 
the corresponding non zero vectors 𝑥𝑥𝑖𝑖 ∈ ℂ𝑛𝑛𝑖𝑖 , 𝑖𝑖 : = 1: 2 such that 
ℙ𝑗𝑗(𝜆𝜆, 𝜇𝜇)𝑥𝑥𝑗𝑗 : = 0. The pair (𝜆𝜆, 𝜇𝜇) ∈ ℂ2 is called the eigenvalue and 
the corresponding tensor product 𝑥𝑥 : = 𝑥𝑥1 ⊗ 𝑥𝑥2 is called the right 
eigenvectors. Similarly, a tensor product 𝑣𝑣1 ⊗ 𝑣𝑣2 is called a left 
eigenvector of the ℙ𝕋𝕋𝕋𝕋ℙ if 𝑣𝑣𝑖𝑖 ≠ 0; 𝑖𝑖 : = 1: 2, satisfies 
𝑣𝑣𝑖𝑖∗ℙ𝑖𝑖(𝜆𝜆, 𝜇𝜇) = 0. For 𝑘𝑘 = 2, the Equation defined in (3) is reduced 
to a Quadratic two-parameter eigenvalue problem (ℚ𝕋𝕋𝕋𝕋ℙ), and 
for 𝑘𝑘 = 3, it is reduced to a ℂ𝕋𝕋𝕋𝕋ℙ. 

ℙ𝕋𝕋𝕋𝕋ℙ topic emerges in the analysis of critical delay differential 
equations (Jarlebring & Hochstenbach, (2009); Meerbergen et al., 
(2013)). For instance, the neutral commensurate differential 
equations (Hochstenbach et al., (2005)) with multiple delays 
(m>1) (Hochstenbach et al., (2015)). Two methodological 
approaches exist to address this phenomenon. The first approach 
enables parametrization of surfaces or curves corresponding to 
the critical delay using m-1 independent variables. The second 
approach posits that the delays are commensurate, functioning 
as integer multiples of a specific delay value τ≥0. The delay 
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differential equation featuring commensurate delays, wherein 
delays operate as integer multiples of a delay value τ, is 

𝑁𝑁0�̇�𝑥(𝑡𝑡) = �𝑀𝑀𝑘𝑘

𝑚𝑚

𝑘𝑘=0

𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑘𝑘), (4) 

where 𝑀𝑀𝑘𝑘 ,𝑁𝑁0 ∈ ℂ𝑛𝑛×𝑛𝑛. The associated eigenvalue problem is, 

��𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚

𝑘𝑘=0

𝑀𝑀𝑘𝑘 − 𝜆𝜆𝑁𝑁0�𝑥𝑥 = 0. (5) 

In stability analysis, the purely imaginary eigenvalues are 
preferred. For this reason, consider 𝜆𝜆 = 𝑖𝑖𝑖𝑖 and 𝜇𝜇 = 𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖. Their 
conjugates are 𝜆𝜆‾ = −𝜆𝜆 and 𝜇𝜇‾ = 𝜇𝜇−1. Taking complex conjugates 
of the Equation (5) and rearranging terms we obtain, 

−𝑀𝑀‾𝑚𝑚𝑥𝑥 = 𝜆𝜆𝜇𝜇𝑚𝑚𝑁𝑁0‾ 𝑥𝑥 + �𝜇𝜇𝑘𝑘
𝑚𝑚

𝑘𝑘=1

𝑀𝑀‾𝑚𝑚−𝑘𝑘𝑥𝑥, 

 𝑀𝑀0𝑦𝑦 = 𝜆𝜆𝑁𝑁0𝑦𝑦 −�𝜇𝜇𝑘𝑘
𝑚𝑚

𝑘𝑘=1

𝑀𝑀‾𝑘𝑘𝑦𝑦. 

(6) 

 

Equation (6) motivates the study of the eigenvalue problem in 
the following form 

𝑀𝑀1𝑥𝑥 = 𝜆𝜆�𝜇𝜇𝑘𝑘
𝑚𝑚

𝑘𝑘=0

𝑁𝑁1,𝑘𝑘𝑥𝑥 + �𝜇𝜇𝑘𝑘
𝑚𝑚

𝑘𝑘=1

𝐶𝐶1,𝑘𝑘𝑥𝑥, 

𝑀𝑀2𝑦𝑦 = 𝜆𝜆�𝜇𝜇𝑘𝑘
𝑚𝑚

𝑘𝑘=0

𝑁𝑁2,𝑘𝑘𝑦𝑦 + �𝜇𝜇𝑘𝑘
𝑚𝑚

𝑘𝑘=1

𝐶𝐶2,𝑘𝑘𝑦𝑦, 

(7) 

which is the general form of ℙ𝕋𝕋𝕋𝕋ℙ. ℙ𝕋𝕋𝕋𝕋ℙ also arises in the 
study of bivariate polynomials (Plestenjak, 2017; Plestenjak & 
Hochstenbach, 2016), and the references therein.  

There are two types of numerical approaches for solving ℙ𝕋𝕋𝕋𝕋ℙ: 
those that deal directly with the problem and those that compute 
eigenvalues of linearized forms. The usual method to solve the 
ℙ𝕋𝕋𝕋𝕋ℙ defined in (3) is by linearizing it into an 𝕃𝕃2𝕋𝕋ℙ of larger 
dimension. The linearized version of problem (3) is singular and 
can be solved by adopting the method proposed in (Dooren, 1997; 
Muhič & Plestenjak, 2009; Košir & Plestenjak, 2022). Moreover, 
the Jacobi-Davidson method developed in Hochstenbach et al. 
(2015) can be applied directly to ℙ𝕋𝕋𝕋𝕋ℙ instead of the linearized 
problem. Linearization is a classical approach to investigating the 
ℙ𝕋𝕋ℙ. Details on linearization of one-parameter matrix 
polynomials are found in the works of Mackey et al. (2006), Bueno 
et al. (2018), Das and Alam (2019), Das (2020), Higham et al. 
(2006), and Lancaster (2008), and the references therein. 
Literature on linearizations for quadratic matrix polynomials is 
found in Kressner and Glibić (2023) and Lancaster and Zaballa 
(2021). The linearization process influences the sensitivity of 
eigenvalues. Therefore, it is important to identify potential 
linearizations and study their constructions. The linearized form 
of two-parameter polynomials has a somewhat complicated 
structure compared to the one-parameter case. Literature on 
linearization of ℚ𝕋𝕋𝕋𝕋ℙ is found in the works of Tisseur and 
Meerbergen (2001), Muhič and Plestenjak (2010), and 
Hochstenbach et al. (2012), and numerical methods are found in 
Plestenjak (2016) and Dong (2022). In this paper, we provide a 
general framework for the canonical structure of the linearized 
form of ℂ𝕋𝕋𝕋𝕋ℙ, which can be considered a continuing thread to 
study the general ℙ𝕋𝕋𝕋𝕋ℙ of degree k. 

This paper is organized as follows: Section 2 contains basic 
preliminaries. Section 3 contains the problem formulation and its 
basic theory. Section 4 contains a unified framework on different 
linearization techniques of ℂ𝕋𝕋𝕋𝕋ℙ. In Section 5, the ranks of delta 
matrices involved in ℂ𝕋𝕋𝕋𝕋ℙ are derived. A numerical example is 
presented in Section 6 to compare the linearization classes, and 
finally, in Section 7, a conclusion is drawn on the whole work. 

 
2. Preliminaries   
The following basic definitions and results are applied throughout the paper: 𝐴𝐴 ∈ ℂ𝑛𝑛1×𝑛𝑛2 is the matrix of size 𝑛𝑛1 × 𝑛𝑛2 over ℂ. 𝐴𝐴−1, 𝐴𝐴𝑇𝑇 and 𝐴𝐴∗ 
represents the inverse, transpose and conjugate transpose of the matrix 𝐴𝐴, respectively. The Euclidean norm of the matrix 𝐴𝐴 is denoted by 
∥𝐴𝐴∥ and the standard Kronecker product is denoted by ⊗.  

Definition 1. (Henderson et al., (1983)) The Kronecker Product (⊗) for two matrices A and B is defined as 𝐴𝐴⊗𝜆𝜆 = �𝑎𝑎𝑖𝑖𝑗𝑗𝜆𝜆�, where 𝑎𝑎𝑖𝑖𝑗𝑗 are the 
elements in 𝑖𝑖𝑡𝑡ℎ row and 𝑗𝑗𝑡𝑡ℎ  column of the matrix A. 

Definition 2. (Tracy & Singh, (1972)) Tracy–Singh product of partitioned matrices: Let an 𝑚𝑚 × 𝑛𝑛 matrix A be partitioned into the 𝑚𝑚𝑖𝑖 × 𝑛𝑛𝑗𝑗  
blocks 𝐴𝐴𝑖𝑖𝑗𝑗 and a 𝑝𝑝 × 𝑞𝑞 matrix B into the 𝑝𝑝𝑘𝑘 × 𝑞𝑞𝑙𝑙 blocks 𝜆𝜆𝑘𝑘𝑙𝑙 such that 𝑚𝑚 = ∑ 𝑚𝑚𝑖𝑖

𝑟𝑟
𝑖𝑖=1 , 𝑛𝑛 = ∑ 𝑛𝑛𝑗𝑗𝑠𝑠

𝑗𝑗=1 , 𝑝𝑝 = ∑ 𝑝𝑝𝑘𝑘𝑡𝑡
𝑘𝑘=1 , 𝑞𝑞 = ∑ 𝑞𝑞𝑙𝑙𝑢𝑢

𝑙𝑙=1 . The Tracy–Singh 

product 𝐴𝐴⊙𝜆𝜆 is a 𝑚𝑚𝑝𝑝 × 𝑛𝑛𝑞𝑞 matrix, defined as 𝐴𝐴⊙𝜆𝜆 = �𝐴𝐴𝑖𝑖𝑗𝑗 ⊙ 𝜆𝜆�
𝑖𝑖𝑗𝑗

= ��𝐴𝐴𝑖𝑖𝑗𝑗 ⊗ 𝜆𝜆𝑘𝑘𝑙𝑙�𝑘𝑘𝑙𝑙�𝑖𝑖𝑗𝑗
 , where the (ij)th block of the product is the 𝑚𝑚𝑖𝑖𝑝𝑝 ×

𝑛𝑛𝑗𝑗𝑞𝑞 matrix 𝐴𝐴𝑖𝑖𝑗𝑗 ⊙ 𝜆𝜆, of which the (kl)th subblock equals the 𝑚𝑚𝑖𝑖𝑝𝑝𝑘𝑘 × 𝑛𝑛𝑗𝑗𝑞𝑞𝑙𝑙 matrix 𝐴𝐴𝑖𝑖𝑗𝑗 ⊗ 𝜆𝜆𝑘𝑘𝑙𝑙. 

For example, if we take 𝐴𝐴 = �A11 A12
A21 A22

� and 𝜆𝜆 = �𝜆𝜆11 𝜆𝜆12
𝜆𝜆21 𝜆𝜆22

�; then the Tracy-Singh product is defined as, 

 𝐴𝐴⊙ 𝜆𝜆 = �A11 ⊙ B A12 ⊙ B
A21 ⊙ B A22 ⊙ B� = �

A11 ⊗ B11 A11 ⊗ B12
A11 ⊗ B21 A11 ⊗ B22

A12 ⊗ B11 A12 ⊗ B12
A12 ⊗ B21 A12 ⊗ B22

A21 ⊗ B11 A21 ⊗ B12
A21 ⊗ B21 A21 ⊗ B22

A22 ⊗ B11 A22 ⊗ B12
A22 ⊗ B21 A22 ⊗ B22

� 
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We will denote the Tracy-Singh Product by a map TSP. 

Definition 3. (Muhič & Plestenjak, (2010))) Tracy-Singh reordering of two block matrices A and B is given by a map 𝑇𝑇𝑇𝑇𝑇𝑇, such that 
𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴⊗ 𝜆𝜆) = 𝐴𝐴⊙𝜆𝜆, i.e., we reorder the columns and rows of the Kronecker product 𝐴𝐴⊗ 𝜆𝜆, to obtain the Tracy-Singh product. 

Theorem 1. (Tracy & Jinadasa, (1989)) When 𝐴𝐴 and 𝜆𝜆 can be partitioned into equal-sized blocks, then Tracy-Singh product 𝐴𝐴⊙𝜆𝜆 and the 
Kronecker product 𝐴𝐴⊗ 𝜆𝜆 are permutation equivalent. 

Definition 4. (Hochstenbach, (2003)) The generalized eigenvalue problem (𝔾𝔾𝕋𝕋ℙ) is to find the pair (𝜆𝜆, 𝑥𝑥) that satisfies the matrix equation of 
the form 𝐴𝐴𝑥𝑥 = 𝜆𝜆𝜆𝜆𝑥𝑥, where A and B are any matrices over ℂ, x is a non-zero vector, and 𝜆𝜆 is the spectral parameter. 

Definition 5. (Atkinson, (1972)) 𝕃𝕃𝕃𝕃𝕋𝕋ℙ is to find the scalars 𝜆𝜆𝑖𝑖 ∈ ℂ and the corresponding non-zero vectors 𝑥𝑥𝑖𝑖 ∈ ℂ𝑚𝑚𝑖𝑖 such that,  

𝕎𝕎(𝑋𝑋,𝛺𝛺) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝕎𝕎1(𝜆𝜆)𝑥𝑥1
…
𝕎𝕎𝑛𝑛(𝜆𝜆)𝑥𝑥𝑛𝑛
1
2

(𝑥𝑥1∗𝑥𝑥1 − 1)
…
1
2

(𝑥𝑥𝑛𝑛∗𝑥𝑥𝑛𝑛 − 1)

    = 0,                                            (8) 

 

 where 𝕎𝕎𝑖𝑖(𝜆𝜆) : = −𝐴𝐴𝑖𝑖0 + ∑ 𝜆𝜆𝑗𝑗𝑛𝑛
𝑗𝑗=1 𝐴𝐴𝑖𝑖𝑗𝑗; 𝐴𝐴𝑖𝑖𝑗𝑗 ∈ ℂ𝑚𝑚𝑖𝑖×𝑚𝑚𝑖𝑖; 𝑖𝑖 : = 1:𝑛𝑛; 𝑗𝑗 : = 0:𝑛𝑛. 𝕃𝕃2𝕋𝕋ℙ being the special case of 𝕃𝕃𝕃𝕃𝕋𝕋ℙ when n = 2. 

Definition 6. (Hochstenbach et al., (2012)) Let ℚ(𝜆𝜆, 𝜇𝜇) : = ∑ ∑ 𝜆𝜆𝑖𝑖𝑘𝑘−𝑖𝑖
𝑗𝑗=0

𝑘𝑘
𝑖𝑖=0 𝜇𝜇𝑗𝑗𝑃𝑃𝑖𝑖𝑗𝑗 be any 𝑛𝑛 × 𝑛𝑛 matrix polynomial. Then, an 𝑙𝑙𝑛𝑛 × 𝑙𝑙𝑛𝑛 linear matrix 

polynomial 𝕃𝕃(𝜆𝜆,𝜇𝜇) = 𝐿𝐿0 + 𝜆𝜆𝐿𝐿1 + 𝜇𝜇𝐿𝐿2 is a linearization of ℚ(𝜆𝜆,𝜇𝜇) if there exist polynomials ℳ(𝜆𝜆, 𝜇𝜇) and 𝒩𝒩(𝜆𝜆, 𝜇𝜇), whose determinant is a 

non-zero constant independent of 𝜆𝜆 and 𝜇𝜇, such that �ℚ
(𝜆𝜆, 𝜇𝜇) 0

0 𝐼𝐼(𝑙𝑙−1)𝑛𝑛
� = ℳ(𝜆𝜆, 𝜇𝜇)𝕃𝕃(𝜆𝜆, 𝜇𝜇)𝒩𝒩(𝜆𝜆, 𝜇𝜇). 

 
3. General Theory of ℂ𝕋𝕋𝕋𝕋ℙ 

The standard form of ℂ𝕋𝕋𝕋𝕋ℙ, which is being the special case ℙ𝕋𝕋𝕋𝕋ℙ when 𝑘𝑘 = 3, is given by 

                                                              ℙ1
(𝜆𝜆, 𝜇𝜇)𝑥𝑥1 = 0,

ℙ2(𝜆𝜆, 𝜇𝜇)𝑥𝑥2 = 0,                                                                                (9) 

where 
ℙ1(𝜆𝜆, 𝜇𝜇) = 𝜆𝜆3𝐴𝐴30 + 𝜆𝜆2𝜇𝜇𝐴𝐴21 + 𝜆𝜆𝜇𝜇2𝐴𝐴12 + 𝜇𝜇3𝐴𝐴03 + 𝜆𝜆2𝐴𝐴20 + 𝜆𝜆𝜇𝜇𝐴𝐴11 + 𝜇𝜇2𝐴𝐴02 + 𝜆𝜆𝐴𝐴10 + 𝜇𝜇𝐴𝐴01 + 𝐴𝐴00;  

ℙ2(𝜆𝜆,𝜇𝜇) = 𝜆𝜆3𝜆𝜆30 + 𝜆𝜆2𝜇𝜇𝜆𝜆21 + 𝜆𝜆𝜇𝜇2𝜆𝜆12 + 𝜇𝜇3𝜆𝜆03 + 𝜆𝜆2𝜆𝜆20 + 𝜆𝜆𝜇𝜇𝜆𝜆11 + 𝜇𝜇2𝜆𝜆02 + 𝜆𝜆𝜆𝜆10 + 𝜇𝜇𝜆𝜆01 + 𝜆𝜆00; and 𝐴𝐴𝑖𝑖𝑗𝑗, 𝜆𝜆𝑖𝑖𝑗𝑗 are 𝑛𝑛 × 𝑛𝑛 matrices over ℂ; 𝑖𝑖
: = 1: 2, 𝑗𝑗 : = 0: 9 such that at least one of the matrices 𝐴𝐴30,𝐴𝐴03,𝜆𝜆30,𝜆𝜆03,𝐴𝐴21,𝐴𝐴12,𝜆𝜆21,𝜆𝜆12 is nonzero.  

The ℂ𝕋𝕋𝕋𝕋ℙ appears in prior work (Muhič & Plestenjak, 2010) (Example 20), where the problem is linearized into a 𝕃𝕃2𝕋𝕋ℙ. However, the 
authors did not provide proof of the Kronecker structure involved in theory, similar to the quadratic case, due to the complexity arising in 
the respective Kronecker canonical structure. For a given ℂ𝕋𝕋𝕋𝕋ℙ defined in (9), we investigate the 𝕃𝕃2𝕋𝕋ℙ, 

                         
𝕃𝕃(1)(λ, μ)𝑤𝑤1 = �𝕃𝕃0

(1) + 𝜆𝜆𝕃𝕃1
(1) + 𝜇𝜇𝕃𝕃2

(1)�𝑤𝑤1 = 0

𝕃𝕃(2)(λ, μ)𝑤𝑤2 = �𝕃𝕃0
(2) + 𝜆𝜆𝕃𝕃1

(2) + 𝜇𝜇𝕃𝕃2
(2)�𝑤𝑤2 = 0

                                              (10) 

where 𝑤𝑤𝑖𝑖 ∈ ℂ6𝑛𝑛  0; 𝕃𝕃𝑗𝑗
(𝑖𝑖) ∈ ℂ6𝑛𝑛×6𝑛𝑛 , 𝑖𝑖 : = 1: 2, 𝑗𝑗 = 0: 2, such that (10) agrees with the eigenvalues of (9). Converting the problem into a system 

of joint 𝔾𝔾𝕋𝕋ℙ in the tensor product space is considered the de facto method, known as the Delta method (Atkinson, 1972) for spectral analysis 
of the problem. The equivalence between the problem 𝕃𝕃2𝕋𝕋ℙ and the corresponding joint 𝔾𝔾𝕋𝕋ℙ can be established by transforming the 
problem into a commuting pair of specific operator matrices with the following operator determinants, 

𝛥𝛥0 : = 𝕃𝕃1
(1) ⊗𝕃𝕃2

(2) − 𝕃𝕃2
(1) ⊗𝕃𝕃1

(2)          

𝛥𝛥1 : = 𝕃𝕃2
(1) ⊗𝕃𝕃0

(2) − 𝕃𝕃0
(1) ⊗𝕃𝕃2

(2);𝛥𝛥2 : = 𝕃𝕃0
(1) ⊗𝕃𝕃1

(2) − 𝕃𝕃1
(1) ⊗𝕃𝕃0

(2)    (11) 

Then each 𝛥𝛥𝑖𝑖 , 𝑖𝑖 : = 1: 2 is 𝑁𝑁 × 𝑁𝑁 matrices, where 𝑁𝑁 : = 36𝑛𝑛2. The system (10) is referred to as singular or nonsingular, according to the 
operator matrix 𝛥𝛥0 specified in Equation (11). The proof for the singularity of 𝛥𝛥0 has been discussed in Section 5, along with the other two 
operator matrices 𝛥𝛥1 and 𝛥𝛥2 using Tracy-Singh product. For spectral analysis, the linear ℙ𝕋𝕋𝕋𝕋ℙ is generally considered as nonsingular and a 
commuting tuple of the form 𝛤𝛤 : = (𝛤𝛤1,𝛤𝛤2) is used, where 𝛤𝛤𝑖𝑖 : = 𝛥𝛥0−1𝛥𝛥𝑖𝑖; 𝑖𝑖 : = 1,2 and is equivalent to a system of joint 𝔾𝔾𝕋𝕋ℙ  of the form given 
by, 
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𝛥𝛥𝑗𝑗𝑢𝑢 = 𝜆𝜆𝑗𝑗𝛥𝛥0𝑢𝑢;   𝑗𝑗 : = 1, 2;        (12) 

where 𝑢𝑢 = 𝑤𝑤1 ⊗𝑤𝑤2 ∈ ℂ𝑁𝑁  is a decomposable tensor. System (10) is called linearization of ℂ𝕋𝕋𝕋𝕋ℙ defined in (9). 

Theorem 2.  (Atkinson, (1972); Muhič & Plestenjak, (2010)) For given values 𝛼𝛼0,𝛼𝛼1 and 𝛼𝛼2, the homogeneous problem, 

                                        �𝜂𝜂0𝕃𝕃0
(1) + 𝜂𝜂1𝕃𝕃1

(1) + 𝜂𝜂2𝕃𝕃2
(1)�𝑤𝑤1 = 0 

                                        �𝜂𝜂0𝕃𝕃0
(2) + 𝜂𝜂1𝕃𝕃1

(2) + 𝜂𝜂2𝕃𝕃2
(2)�𝑤𝑤2 = 0                                  (13)  

satisfies the following equivalent conditions 

1. The matrix 𝛥𝛥 = ∑ 𝛼𝛼𝑖𝑖2
𝑖𝑖=0 𝛥𝛥𝑖𝑖 is singular. 

2. There exists an eigenvalue (𝜂𝜂0, 𝜂𝜂1, 𝜂𝜂2) of the system (12) such that ∑ 𝜂𝜂𝑖𝑖2
𝑖𝑖=0 𝛼𝛼𝑖𝑖 = 0 

The same result for nonsingularity has been stated in the following way also. 

Theorem 3. (Atkinson, (1972); Muhič & Plestenjak, (2010)) The homogeneous 𝕃𝕃𝕃𝕃𝕋𝕋ℙ  

∑ 𝜂𝜂𝑗𝑗𝑘𝑘
𝑗𝑗=0 𝐴𝐴𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 = 0       (14) 

 where 𝐴𝐴𝑖𝑖𝑗𝑗 ∈ ℂ𝑛𝑛𝑖𝑖×𝑛𝑛𝑖𝑖, for 𝑖𝑖 = 1, … , 𝑘𝑘 and 𝑗𝑗 = 0, … , 𝑘𝑘 is said to be nonsingular if there exists a nonsingular linear combination of the operator 
determinants 𝛥𝛥𝑖𝑖’s, i.e., 𝛥𝛥 = ∑ 𝛼𝛼𝑖𝑖𝑘𝑘

𝑖𝑖=0 𝛥𝛥𝑖𝑖. This is equivalent to the condition that, if 𝜂𝜂 = (𝜂𝜂0, 𝜂𝜂1, … , 𝜂𝜂𝑘𝑘) is an eigenvalue of (14), then ∑ 𝛼𝛼𝑖𝑖𝑘𝑘
𝑖𝑖=0 𝜂𝜂𝑖𝑖 ≠

0. 

Theorem 4. (Cox et al., (2005)) (Bezout’s theorem) Two projective curves of orders n and m with no 
common component has precisely nm points of intersection counting multiplicities. 

 
4. Linearization of ℂ𝕋𝕋𝕋𝕋ℙ 
In this section, we present three different types of linearization techniques of ℂ𝕋𝕋𝕋𝕋ℙ. Two of them are the general linearization, resulting in 
a singular 𝕃𝕃2𝕋𝕋ℙ, with coefficient matrices of size 6𝑛𝑛 × 6𝑛𝑛 and 9𝑛𝑛 × 9𝑛𝑛, respectively. The singularity conditions for the associated 𝔾𝔾𝕋𝕋ℙ is 
shown with the help of Tracy-Singh reordering in 𝛥𝛥𝑖𝑖’s. The third type of linearization is done by replacing nonlinear terms with new variables, 
which formulates a nonsingular linear nine-parameter eigenvalue problem (𝕃𝕃9𝕋𝕋ℙ) so that more efficient methods for solving nonsingular 
problems can be applied in this case. 

Standard Linearization 
For a given ℂ𝕋𝕋𝕋𝕋ℙ, and by following definition 5, we can linearize the ℂ𝕋𝕋𝕋𝕋ℙ into a 𝕃𝕃2𝕋𝕋ℙ (Muhič & Plestenjak, 2010) of the form,  

⎝

⎜⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴00 𝐴𝐴10 𝐴𝐴01 𝐴𝐴20 𝐴𝐴11 𝐴𝐴02

0 −𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 0 0 0
0 0 0 −𝐼𝐼 0 0
0 0 0 0 −𝐼𝐼 0
0 0 0 0 0 −𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

+ 𝜆𝜆

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 𝐴𝐴30 𝐴𝐴21 𝐴𝐴12
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

+ 𝜇𝜇

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 𝐴𝐴03
0 0 0 0 0 0
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

⎠

⎟⎟
⎞

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝜆𝜆𝑥𝑥1
𝜇𝜇𝑥𝑥1
𝜆𝜆2𝑥𝑥1
𝜆𝜆𝜇𝜇𝑥𝑥1
𝜇𝜇2𝑥𝑥1⎦

⎥
⎥
⎥
⎥
⎤

= 0, 

⎝

⎜⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎡
𝜆𝜆00 𝜆𝜆10 𝜆𝜆01 𝜆𝜆20 𝜆𝜆11 𝜆𝜆02

0 −𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 0 0 0
0 0 0 −𝐼𝐼 0 0
0 0 0 0 −𝐼𝐼 0
0 0 0 0 0 −𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

+ 𝜆𝜆

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 𝜆𝜆30 𝜆𝜆21 𝜆𝜆12
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

+ 𝜇𝜇

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 𝜆𝜆03
0 0 0 0 0 0
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

⎠

⎟⎟
⎞

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥2
𝜆𝜆𝑥𝑥2
𝜇𝜇𝑥𝑥2
𝜆𝜆2𝑥𝑥2
𝜆𝜆𝜇𝜇𝑥𝑥2
𝜇𝜇2𝑥𝑥2⎦

⎥
⎥
⎥
⎥
⎤

= 0.                              (15) 

Comparing Equation (15) with that of the Equation (10), we have, 

𝕃𝕃0
(1) =

⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴00 𝐴𝐴10 𝐴𝐴01 𝐴𝐴20 𝐴𝐴11 𝐴𝐴02

0 −𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 0 0 0
0 0 0 −𝐼𝐼 0 0
0 0 0 0 −𝐼𝐼 0
0 0 0 0 0 −𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 𝕃𝕃1
(1) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 𝐴𝐴30 𝐴𝐴21 𝐴𝐴12
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝕃𝕃2
(1) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 𝐴𝐴03
0 0 0 0 0 0
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

,𝕃𝕃0
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
𝜆𝜆00 𝜆𝜆10 𝜆𝜆01 𝜆𝜆20 𝜆𝜆11 𝜆𝜆02

0 −𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 0 0 0
0 0 0 −𝐼𝐼 0 0
0 0 0 0 −𝐼𝐼 0
0 0 0 0 0 −𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 
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𝕃𝕃1
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 𝜆𝜆30 𝜆𝜆21 𝜆𝜆12
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

,𝕃𝕃2
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 𝜆𝜆03
0 0 0 0 0 0
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

. 

For the first Equation in (15), consider,  

Λ =

⎣
⎢
⎢
⎢
⎢
⎡

1
𝜆𝜆
𝜇𝜇
𝜆𝜆2
𝜆𝜆𝜇𝜇
𝜇𝜇2⎦
⎥
⎥
⎥
⎥
⎤

,   and  𝑤𝑤1 = Λ⊗ 𝑥𝑥1 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝜆𝜆𝑥𝑥1
𝜇𝜇𝑥𝑥1
𝜆𝜆2𝑥𝑥1
𝜆𝜆𝜇𝜇𝑥𝑥1
𝜇𝜇2𝑥𝑥1⎦

⎥
⎥
⎥
⎥
⎤

. 

Thus, 𝑥𝑥1 is an eigenvector corresponding to the eigenvalue (λ,μ) of ℙ1(λ, μ) from Equation (9) if and only if 𝑤𝑤1 = Λ⊗ 𝑥𝑥1 is an eigenvector 
corresponding to the eigenvalue (λ,μ) of 𝕃𝕃(1)(λ, μ) from Equation (10). Now, using the definition 6, we demonstrate that 𝕃𝕃(1)(λ,μ) is a 
linearization of ℙ1(λ, μ). For that define 

𝒩𝒩(λ, μ) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐼𝐼𝑛𝑛 0 0 0 0 0
λ𝐼𝐼𝑛𝑛 0 0 0 0 𝐼𝐼𝑛𝑛
μ𝐼𝐼𝑛𝑛 0 0 0 𝐼𝐼𝑛𝑛 0
λ2𝐼𝐼𝑛𝑛 0 0 𝐼𝐼𝑛𝑛 0 0
λμ𝐼𝐼𝑛𝑛 0 𝐼𝐼𝑛𝑛 0 0 0
μ2𝐼𝐼𝑛𝑛 𝐼𝐼𝑛𝑛 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 

ℳ(λ, μ) =

⎣
⎢
⎢
⎢
⎢
⎡𝐼𝐼𝑛𝑛 S1(λ, μ) S2(λ, μ) A20 + λA30 A11 + λA21 A02 + λA12 + μA03

0 0 μ𝐼𝐼𝑛𝑛 0 0 −𝐼𝐼𝑛𝑛
0 0 λIn 0 −𝐼𝐼𝑛𝑛 0
0 λ𝐼𝐼𝑛𝑛 0 −𝐼𝐼𝑛𝑛 0 0
0 0 −𝐼𝐼𝑛𝑛 0 0 0
0 −𝐼𝐼𝑛𝑛 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

where  𝑇𝑇1(λ,μ) = 𝐴𝐴10 + λ𝐴𝐴20 + λ2𝐴𝐴30 and 𝑇𝑇2(λ, μ) = 𝐴𝐴01 + λ𝐴𝐴11 + λ2𝐴𝐴21 + μ𝐴𝐴02 + λμ𝐴𝐴12 + μ2𝐴𝐴03.  Then we can check that, 

ℳ(λ,μ)𝕃𝕃(1)(λ,μ)𝒩𝒩(λ, μ) = �ℙ1(λ, μ) 0
0 𝐼𝐼5𝑛𝑛

�. 

Thus, we have det ℙ1(λ,μ) = α det 𝕃𝕃(1)(λ, μ), for some α ≠ 0. This indicates that 𝕃𝕃(1)(λ, μ)  is a llinearization of ℙ1(λ, μ) and it preserves 
the eigenvalues of ℙ1(λ, μ). Similarly, we can also check for the second Equation of (15).  

Khazanov Linearization 
This approach was presented by Khazanov (2007). In this approach, we first write ℙ1(𝜆𝜆,𝜇𝜇) as a polynomial in 𝜆𝜆. 

 (𝜆𝜆3𝐴𝐴30 + 𝜆𝜆2(𝜇𝜇𝐴𝐴21 + 𝐴𝐴20) + 𝜆𝜆(𝜇𝜇2𝐴𝐴12 + 𝜇𝜇𝐴𝐴11 + 𝐴𝐴10) + (𝜇𝜇3𝐴𝐴03 + 𝜇𝜇2𝐴𝐴02 + 𝜇𝜇𝐴𝐴01 + 𝐴𝐴00)𝑥𝑥1 = 0.   (16)   

Now, by using the first companion form, Equation (16) can be linearized as, 

�𝜆𝜆 �
0 0 𝐴𝐴30
0 𝐼𝐼 0
𝐼𝐼 0 0

� + �
𝜇𝜇3𝐴𝐴03 + 𝜇𝜇2𝐴𝐴02 + 𝜇𝜇𝐴𝐴01 + 𝐴𝐴00 𝜇𝜇2𝐴𝐴12 + 𝜇𝜇𝐴𝐴11 + 𝐴𝐴10 𝜇𝜇𝐴𝐴21 + 𝐴𝐴20

0 0 −𝐼𝐼
0 −𝐼𝐼 0

�� �
𝑥𝑥1
𝜆𝜆𝑥𝑥1
𝜆𝜆2𝑥𝑥1

�  = 0.           (17) 

Now, by considering the polynomial in 𝜇𝜇, we obtain 

 �𝜇𝜇3 �
𝐴𝐴03 0 0

0 0 0
0 0 0

� + 𝜇𝜇2 �
𝐴𝐴02 𝐴𝐴12 0

0 0 0
0 0 0

� + 𝜇𝜇 �
𝐴𝐴01 𝐴𝐴11 𝐴𝐴21

0 0 0
0 0 0

� + �
𝐴𝐴00 𝐴𝐴10 𝜆𝜆𝐴𝐴30 + 𝐴𝐴20

0 𝜆𝜆𝐼𝐼 −𝐼𝐼
𝜆𝜆𝐼𝐼 −𝐼𝐼 0

�� �
𝑥𝑥1
𝜆𝜆𝑥𝑥1
𝜆𝜆2𝑥𝑥1

� = 0.           (18) 

By using the first companion form for linearization, we have 
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⎝

⎜
⎛
𝜇𝜇

⎣
⎢
⎢
⎢
⎡ 0 0 �

𝐴𝐴03 0 0
0 0 0
0 0 0

�

0 𝐼𝐼3𝑛𝑛 0
𝐼𝐼3𝑛𝑛 0 0 ⎦

⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡�
𝐴𝐴00 𝐴𝐴10 𝜆𝜆𝐴𝐴30 + 𝐴𝐴20

0 𝜆𝜆𝐼𝐼 −𝐼𝐼
𝜆𝜆𝐼𝐼 −𝐼𝐼 0

� �
𝐴𝐴01 𝐴𝐴11 𝐴𝐴21

0 0 0
0 0 0

� �
𝐴𝐴02 𝐴𝐴12 0

0 0 0
0 0 0

�

0 0 −𝐼𝐼3𝑛𝑛
0 −𝐼𝐼3𝑛𝑛 0 ⎦

⎥
⎥
⎥
⎤

⎠

⎟
⎞

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥1
𝜆𝜆𝑥𝑥1
𝜆𝜆2𝑥𝑥1
𝜇𝜇𝑥𝑥1
𝜆𝜆𝜇𝜇𝑥𝑥1
𝜆𝜆2𝜇𝜇𝑥𝑥1
𝜇𝜇2𝑥𝑥1
𝜆𝜆𝜇𝜇2𝑥𝑥1
𝜆𝜆2𝜇𝜇2𝑥𝑥1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0,   (19) 

which can also be rewritten as 

 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

 𝜇𝜇

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0 𝐴𝐴03 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 𝐼𝐼𝑛𝑛 0 0 0 0 0
0 0 0 0 𝐼𝐼𝑛𝑛 0 0 0 0
0 0 0 0 0 𝐼𝐼𝑛𝑛 0 0 0
𝐼𝐼𝑛𝑛 0 0 0 0 0 0 0 0
0 𝐼𝐼𝑛𝑛 0 0 0 0 0 0 0
0 0 𝐼𝐼𝑛𝑛 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐴𝐴00 𝐴𝐴10 𝜆𝜆𝐴𝐴30 + 𝐴𝐴20 𝐴𝐴01 𝐴𝐴11 𝐴𝐴21 𝐴𝐴02 𝐴𝐴12 0

0 𝜆𝜆𝐼𝐼𝑛𝑛 −𝐼𝐼𝑛𝑛 0 0 0 0 0 0
𝜆𝜆𝐼𝐼𝑛𝑛 −𝐼𝐼𝑛𝑛 0 0 0 0 0 0 0
0 0 0 0 0 0 −𝐼𝐼𝑛𝑛 0 0
0 0 0 0 0 0 0 −𝐼𝐼𝑛𝑛 0
0 0 0 0 0 0 0 0 −𝐼𝐼𝑛𝑛
0 0 0 −𝐼𝐼𝑛𝑛 0 0 0 0 0
0 0 0 0 −𝐼𝐼𝑛𝑛 0 0 0 0
0 0 0 0 0 −𝐼𝐼𝑛𝑛 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥1
𝜆𝜆𝑥𝑥1
𝜆𝜆2𝑥𝑥1
𝜇𝜇𝑥𝑥1
𝜆𝜆𝜇𝜇𝑥𝑥1
𝜆𝜆2𝜇𝜇𝑥𝑥1
𝜇𝜇2𝑥𝑥1
𝜆𝜆𝜇𝜇2𝑥𝑥1
𝜆𝜆2𝜇𝜇2𝑥𝑥1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0.    (20) 

 

This is equivalent to 

𝜆𝜆

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 𝐴𝐴30 0 0 0 0 0 0
0 𝐼𝐼𝑛𝑛 0 0 0 0 0 0 0
𝐼𝐼𝑛𝑛 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ 𝜇𝜇

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0 𝐴𝐴03 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 𝐼𝐼𝑛𝑛 0 0 0 0 0
0 0 0 0 𝐼𝐼𝑛𝑛 0 0 0 0
0 0 0 0 0 𝐼𝐼𝑛𝑛 0 0 0
𝐼𝐼𝑛𝑛 0 0 0 0 0 0 0 0
0 𝐼𝐼𝑛𝑛 0 0 0 0 0 0 0
0 0 𝐼𝐼𝑛𝑛 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(21) 

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐴𝐴00 𝐴𝐴10 𝐴𝐴20 𝐴𝐴01 𝐴𝐴11 𝐴𝐴21 𝐴𝐴02 𝐴𝐴12 0

0 0 −𝐼𝐼𝑛𝑛 0 0 0 0 0 0
0 −𝐼𝐼𝑛𝑛 0 0 0 0 0 0 0
0 0 0 0 0 0 −𝐼𝐼𝑛𝑛 0 0
0 0 0 0 0 0 0 −𝐼𝐼𝑛𝑛 0
0 0 0 0 0 0 0 0 −𝐼𝐼𝑛𝑛
0 0 0 −𝐼𝐼𝑛𝑛 0 0 0 0 0
0 0 0 0 −𝐼𝐼𝑛𝑛 0 0 0 0
0 0 0 0 0 −𝐼𝐼𝑛𝑛 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥1
𝜆𝜆𝑥𝑥1
𝜆𝜆2𝑥𝑥1
𝜇𝜇𝑥𝑥1
𝜆𝜆𝜇𝜇𝑥𝑥1
𝜆𝜆2𝜇𝜇𝑥𝑥1
𝜇𝜇2𝑥𝑥1
𝜆𝜆𝜇𝜇2𝑥𝑥1
𝜆𝜆2𝜇𝜇2𝑥𝑥1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0. 

This linearization is called Khazanov Linearization. Proceeding similarly for ℙ2(𝜆𝜆, 𝜇𝜇), the respective linearization can be obtained. In the place 
of the first companion form of linearizations in Equations (17) and (19), if we use different forms of linearizations, we obtain further 
linearizations with 9𝑛𝑛 × 9𝑛𝑛 matrices. The size of the matrices in the Khazanov linearization in Equation (21) is 9𝑛𝑛 × 9𝑛𝑛, which is larger than 
that of the Standard linearization (6𝑛𝑛 × 6𝑛𝑛). Thus, the Khazanov linearization is numerically less efficient than that of the Standard 
linearization. Moreover, one can further deduce the standard linearization from the Khazanov linearization of (21). 
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Linearization Like Method 

Consider the ℂ𝕋𝕋𝕋𝕋ℙ defined in (9), we introduce the new variables 𝛼𝛼 = 𝜆𝜆3, 𝛽𝛽 = 𝜆𝜆2𝜇𝜇, 𝛾𝛾 = 𝜆𝜆𝜇𝜇2, 𝛿𝛿 = 𝜇𝜇3, 𝜂𝜂 = 𝜆𝜆2, 𝜈𝜈 = 𝜆𝜆𝜇𝜇 and 𝜎𝜎 = 𝜇𝜇2. The 
ℂ𝕋𝕋𝕋𝕋ℙ can be rewritten as a linear 𝕃𝕃9𝕋𝕋ℙ as follows: 

(𝛼𝛼𝐴𝐴30 + 𝛽𝛽𝐴𝐴21 + 𝛾𝛾𝐴𝐴12 + 𝛿𝛿𝐴𝐴03 + 𝜂𝜂𝐴𝐴20 + 𝜈𝜈𝐴𝐴11 + 𝜎𝜎𝐴𝐴02 + 𝜆𝜆𝐴𝐴10 + 𝜇𝜇𝐴𝐴01 + 𝐴𝐴00)𝑥𝑥1 = 0,
(𝛼𝛼𝜆𝜆30 + 𝛽𝛽𝜆𝜆21 + 𝛾𝛾𝜆𝜆12 + 𝛿𝛿𝜆𝜆03 + 𝜂𝜂𝜆𝜆20 + 𝜈𝜈𝜆𝜆11 + 𝜎𝜎𝜆𝜆02 + 𝜆𝜆𝜆𝜆10 + 𝜇𝜇𝜆𝜆01 + 𝜆𝜆00)𝑥𝑥2 = 0,

��
0 0 0
0 1 0
0 0 0

� + 𝜆𝜆 �
0 0 −1
−1 0 0
0 0 0

� + 𝛼𝛼 �
1 0 0
0 0 0
0 0 0

�� �
1
𝜆𝜆
𝜆𝜆2
� = 0,

��
0 0 0
0 1 0
0 0 0

� + 𝜆𝜆 �
0 0 0
−1 0 0
0 0 0

� + 𝜇𝜇 �
0 0 −1
0 0 0
0 0 0

� + 𝛽𝛽 �
1 0 0
0 0 0
0 0 0

�� �
1
𝜆𝜆
𝜆𝜆2
� = 0,

��
0 0 0
0 1 0
0 0 0

� + 𝜆𝜆 �
0 0 −1
0 0 0
0 0 0

� + 𝜇𝜇 �
0 0 0
−1 0 0
0 0 0

� + 𝛽𝛽 �
1 0 0
0 0 0
0 0 0

�� �
1
𝜇𝜇
𝜇𝜇2
� = 0,

��
0 0 0
0 1 0
0 0 0

� + 𝜇𝜇 �
0 0 −1
−1 0 0
0 0 0

� + 𝛿𝛿 �
1 0 0
0 0 0
0 0 0

�� �
1
𝜇𝜇
𝜇𝜇2
� = 0,

��
0 0 0
0 1 0
0 0 0

� + 𝜆𝜆 �
0 −1 0
−1 0 0
0 0 0

� + 𝜂𝜂 �
1 0 0
0 0 0
0 0 0

�� �
1
𝜆𝜆
𝜆𝜆2
� = 0,

 

                     ��
0 0 0
0 1 0
0 0 0

� + 𝜆𝜆 �
0 0 0
−1 0 0
0 0 0

� + 𝜇𝜇 �
0 −1 0
0 0 0
0 0 0

� + 𝜈𝜈 �
1 0 0
0 0 0
0 0 0

�� �
1
𝜆𝜆
𝜆𝜆2
� = 0, 

                                                ��
0 0 0
0 1 0
0 0 0

� + 𝜇𝜇 �
0 −1 0
−1 0 0
0 0 0

� + 𝜎𝜎 �
1 0 0
0 0 0
0 0 0

�� �
1
𝜇𝜇
𝜇𝜇2
� = 0.    (22)      

It can be seen that if �(𝜆𝜆, 𝜇𝜇), 𝑥𝑥1 ⊗ 𝑥𝑥2� is an eigenpair of the ℂ𝕋𝕋𝕋𝕋ℙ defined in (9), then 

�(𝜆𝜆, 𝜇𝜇, 𝜆𝜆2, 𝜆𝜆𝜇𝜇, 𝜇𝜇2, 𝜆𝜆3, 𝜆𝜆2𝜇𝜇, 𝜆𝜆𝜇𝜇2, 𝜇𝜇3),𝑥𝑥1 ⊗ 𝑥𝑥2 ⊗ �
1
𝜆𝜆
𝜆𝜆2
� ⊗ �

1
𝜆𝜆
𝜆𝜆2
� ⊗ �

1
𝜇𝜇
𝜇𝜇2
� ⊗ �

1
𝜇𝜇
𝜇𝜇2
�⊗ �

1
𝜆𝜆
𝜆𝜆2
�⊗ �

1
𝜆𝜆
𝜆𝜆2
�⊗ �

1
𝜇𝜇
𝜇𝜇2
�� 

is an eigenpair of (22). For 𝕃𝕃9𝕋𝕋ℙ, the associated system of 𝔾𝔾𝕋𝕋ℙ becomes 𝛥𝛥𝑗𝑗𝑢𝑢 = 𝜆𝜆𝑗𝑗𝛥𝛥0𝑢𝑢;   𝑗𝑗 : = 1, … . ,9 (Atkinson, 1972). Khazanov 
linearization and the Standard linearization produce a singular 𝕃𝕃2𝕋𝕋ℙ. On the other hand, the linearization method produces a nonsingular 
𝕃𝕃9𝕋𝕋ℙ, which can be shown by the following lemma. 

Lemma 8.  The homogeneous version of the nine-parameter problem defined in (22) is nonsingular. 

Proof. We consider, 

𝜆𝜆 =
�̃�𝜆
�̃�𝜅 , 𝜇𝜇 =

𝜇𝜇�
�̃�𝜅 , 𝛾𝛾 =

𝛾𝛾�
�̃�𝜅 , 𝛿𝛿 =

𝛿𝛿
�̃�𝜅 , 𝜂𝜂 =

𝜂𝜂�
�̃�𝜅 , 𝜈𝜈 =

𝜈𝜈�
�̃�𝜅 ,𝜎𝜎 =

𝜎𝜎�
�̃�𝜅 

Multiplying each Equation of (22) by �̃�𝜅, the homogeneous version of the problem is obtained as, 

    det�𝛼𝛼�𝐴𝐴30 + 𝛽𝛽�𝐴𝐴21 + 𝛾𝛾�𝐴𝐴12 + 𝛿𝛿𝐴𝐴03 + 𝜂𝜂�𝐴𝐴20 + 𝜈𝜈�𝐴𝐴11 + 𝜎𝜎�𝐴𝐴02 + �̃�𝜆𝐴𝐴10 + 𝜇𝜇�𝐴𝐴01 + �̃�𝜅𝐴𝐴00� = 0, 
    det�𝛼𝛼�𝜆𝜆30 + 𝛽𝛽�𝜆𝜆21 + 𝛾𝛾�𝜆𝜆12 + 𝛿𝛿𝜆𝜆03 + 𝜂𝜂�𝜆𝜆20 + 𝜈𝜈�𝜆𝜆11 + 𝜎𝜎�𝜆𝜆02 + �̃�𝜆𝜆𝜆10 + 𝜇𝜇�𝜆𝜆01 + �̃�𝜅𝜆𝜆00� = 0, 

𝛼𝛼��̃�𝜅 − 𝜆𝜆3� = 0, 
𝛽𝛽��̃�𝜅 − 𝜆𝜆2�𝜇𝜇� = 0, 
𝛾𝛾��̃�𝜅 − �̃�𝜆𝜇𝜇2� = 0, 
𝛿𝛿�̃�𝜅 − 𝜇𝜇3� = 0, 
𝜂𝜂��̃�𝜅 − 𝜆𝜆2� = 0, 
𝜈𝜈��̃�𝜅 − �̃�𝜆𝜇𝜇� = 0, 
𝜎𝜎��̃�𝜅 − 𝜇𝜇2� = 0.                                                                                                                          (23) 
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Now consider ��̃�𝜅, �̃�𝜆, 𝜇𝜇�,𝛼𝛼�,𝛽𝛽�,𝛾𝛾�, 𝛿𝛿, 𝜂𝜂�, 𝜈𝜈�,𝜎𝜎�� to be an eigenvalue of (23) such that 𝛼𝛼� = 0. Then, the equations defined in (23) transform into 

det�𝛽𝛽�𝐴𝐴21 + 𝛾𝛾�𝐴𝐴12 + 𝛿𝛿𝐴𝐴03 + 𝜂𝜂�𝐴𝐴20 + 𝜈𝜈�𝐴𝐴11 + 𝜎𝜎�𝐴𝐴02 + �̃�𝜆𝐴𝐴10 + 𝜇𝜇�𝐴𝐴01 + �̃�𝜅𝐴𝐴00� = 0, 
det�𝛽𝛽�𝜆𝜆21 + 𝛾𝛾�𝜆𝜆12 + 𝛿𝛿𝜆𝜆03 + 𝜂𝜂�𝜆𝜆20 + 𝜈𝜈�𝜆𝜆11 + 𝜎𝜎�𝜆𝜆02 + �̃�𝜆𝜆𝜆10 + 𝜇𝜇�𝜆𝜆01 + �̃�𝜅𝜆𝜆00� = 0, 

−𝜆𝜆3� = 0, 
𝛽𝛽��̃�𝜅 − 𝜆𝜆2�𝜇𝜇� = 0, 
𝛾𝛾��̃�𝜅 − �̃�𝜆𝜇𝜇2� = 0, 
𝛿𝛿�̃�𝜅 − 𝜇𝜇3� = 0, 
𝜂𝜂��̃�𝜅 − 𝜆𝜆2� = 0, 
𝜈𝜈��̃�𝜅 − �̃�𝜆𝜇𝜇� = 0, 
𝜎𝜎��̃�𝜅 − 𝜇𝜇2� = 0.                                                                                                                      (24) 

From the third Equation, we have �̃�𝜆 = 0. After substituting its value in the subsequent equations of (24) we obtain 

𝛽𝛽��̃�𝜅 = 0, 𝛾𝛾��̃�𝜅 = 0, 𝛿𝛿�̃�𝜅 = 𝜇𝜇3, 𝜂𝜂��̃�𝜅 = 0, 𝜈𝜈��̃�𝜅 = 0, 𝜎𝜎��̃�𝜅 = 𝜇𝜇2. 

For all of these conditions, two cases may arise. 

3. If �̃�𝜅 = 0, then the sixth and the last Equation in (24) give 𝜇𝜇 = 0. Thus, the remaining equations become, 

det�𝛽𝛽�𝐴𝐴21 + 𝛾𝛾�𝐴𝐴12 + 𝛿𝛿𝐴𝐴03 + 𝜂𝜂�𝐴𝐴20 + 𝜈𝜈�𝐴𝐴11 + 𝜎𝜎�𝐴𝐴02� = 0, 
det�𝛽𝛽�𝜆𝜆21 + 𝛾𝛾�𝜆𝜆12 + 𝛿𝛿𝜆𝜆03 + 𝜂𝜂�𝜆𝜆20 + 𝜈𝜈�𝜆𝜆11 + 𝜎𝜎�𝜆𝜆02� = 0, 

which has no solution in the general case. 

4. If �̃�𝜅 ≠ 0, then for each of the above conditions, we obtain 

𝛽𝛽� = 0, 𝛾𝛾� = 0, 𝛿𝛿 =
𝜇𝜇3�

�̃�𝜅 , 𝜂𝜂� = 0, 𝜈𝜈� = 0, 𝜎𝜎� =
𝜇𝜇2�

�̃�𝜅 . 

Considering the value of 𝛿𝛿, we obtain the above system (24) as follows, 

det�𝜇𝜇
3�

𝜅𝜅�
𝐴𝐴03 + 𝜇𝜇2�

𝜅𝜅�
𝐴𝐴02 + 𝜇𝜇�

𝜅𝜅�
𝐴𝐴01 + 𝐴𝐴00� = 0 

             det�𝜇𝜇
3�

𝜅𝜅�
𝜆𝜆03 + 𝜇𝜇2�

𝜅𝜅�
𝜆𝜆02 + 𝜇𝜇�

𝜅𝜅�
𝜆𝜆01 + 𝜆𝜆00� = 0 

This has no solutions in general. Thus, the problem defined in Equation (22) does not have an eigenvalue with 𝛼𝛼 = 0. It follows Theorem 3, 
where the operator matrix 𝛥𝛥3 is nonsingular. Similarly, the operator matrices 𝛥𝛥𝑖𝑖 for 𝑖𝑖 = 4, … ,9 are nonsingular. ◻ 
 
5. Ranks of Delta Matrices 

In Muhič & Plestenjak (2010), the Kronecker structures for the Delta matrices of the ℚ𝕋𝕋𝕋𝕋ℙ have been discussed extensively to prove the 
similarity between the eigenvalues of the linearized form and the original nonlinear form. Due to the complex Kronecker structures for the 
standard linearization (15) of ℂ𝕋𝕋𝕋𝕋ℙ defined in (9), they did not attempt to prove their ranks and related theory. The ranks of the Delta 
matrices will help us discover interesting structures and prove the singularity of the 𝕃𝕃2𝕋𝕋ℙ defined in (15). These results can be viewed as a 
continuing series of proofs demonstrating that, in accordance with Theorem 17 in Muhič & Plestenjak (2010), the eigenvalues of (15) and (9) 
are identical. 

Determining the rank of Delta matrices is crucial to understanding the nature and number of eigenvalues. Through rank determination, we 
show that all linear combinations of the corresponding operator determinants are singular. When determining the ranks of the Delta 
matrices, it is more straightforward to work with the Tracy-Singh product rather than the Kronecker product, as demonstrated by Definitions 
2, 3, and 4. 
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Finding the rank of 𝚫𝚫𝟎𝟎 
Consider the operator determinant 𝛥𝛥0 defined in (11). The structures of sub-matrices of 𝛥𝛥0 become 

𝕃𝕃0
(1) =

⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴00 𝐴𝐴10 𝐴𝐴01 𝐴𝐴20 𝐴𝐴11 𝐴𝐴02

0 −𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 0 0 0
0 0 0 −𝐼𝐼 0 0
0 0 0 0 −𝐼𝐼 0
0 0 0 0 0 −𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 𝕃𝕃1
(1) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 𝐴𝐴30 𝐴𝐴21 𝐴𝐴12
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝕃𝕃2
(1) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 𝐴𝐴03
0 0 0 0 0 0
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

,𝕃𝕃0
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
𝜆𝜆00 𝜆𝜆10 𝜆𝜆01 𝜆𝜆20 𝜆𝜆11 𝜆𝜆02

0 −𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 0 0 0
0 0 0 −𝐼𝐼 0 0
0 0 0 0 −𝐼𝐼 0
0 0 0 0 0 −𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝕃𝕃1
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 𝜆𝜆30 𝜆𝜆21 𝜆𝜆12
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

,𝕃𝕃2
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 𝜆𝜆03
0 0 0 0 0 0
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

. 

If we apply the Tracy-Singh reordering to 𝛥𝛥0, we obtain 

𝑇𝑇𝑇𝑇𝑇𝑇(𝛥𝛥0) = �0 𝑇𝑇
𝑇𝑇 0�, 

where 𝑇𝑇 ∈ ℂ6𝑛𝑛2×18𝑛𝑛2  and 𝑇𝑇 ∈ ℂ30𝑛𝑛2×18𝑛𝑛2. The block structure representation of 𝑇𝑇 is found to be of the form 𝑇𝑇 = [𝐴𝐴 𝜆𝜆 𝐶𝐶]; where 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 𝐴𝐴30 ⊗ 𝜆𝜆03
0 0 0 0 0 0

𝐴𝐴30 ⊗ 𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐴𝐴30 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝜆𝜆 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 𝐴𝐴21 ⊗ 𝜆𝜆03
0 0 0 0 0 0

𝐴𝐴21 ⊗ 𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐴𝐴21 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 −𝐴𝐴03 ⊗ 𝜆𝜆30 −𝐴𝐴03 ⊗ 𝜆𝜆21 𝐴𝐴12 ⊗ 𝜆𝜆03 − 𝐴𝐴03 ⊗ 𝜆𝜆12
−𝐴𝐴03 ⊗ 𝐼𝐼 0 0 0 0 0
𝐴𝐴12 ⊗ 𝐼𝐼 0 0 0 0 0

0 −𝐴𝐴03 ⊗ 𝐼𝐼 0 0 0 0
0 0 −𝐴𝐴03 ⊗ 𝐼𝐼 0 0 0
0 0 𝐴𝐴12 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

Similarly, the block representation of 𝑇𝑇 can be determined as 

                                                         𝑇𝑇 =

⎣
⎢
⎢
⎢
⎡
𝐷𝐷 0 0
𝐸𝐸 0 0
0 𝐹𝐹 0
0 0 𝐺𝐺
0 0 𝐻𝐻⎦

⎥
⎥
⎥
⎤
, 

where  𝐷𝐷 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 𝐼𝐼 ⊗ 𝜆𝜆03
0 0 0 0 0 0

𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 
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𝐸𝐸 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 −𝐼𝐼 ⊗ 𝜆𝜆30 −𝐼𝐼 ⊗ 𝜆𝜆21 −𝐼𝐼 ⊗ 𝜆𝜆12
−𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0 0

0 0 0 0 0 0
0 −𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 ⊗ 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 𝐼𝐼 ⊗ 𝜆𝜆03
0 0 0 0 0 0

𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝐺𝐺 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 𝐼𝐼 ⊗ 𝜆𝜆03
0 0 0 0 0 0

𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝐻𝐻 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 −𝐼𝐼 ⊗ 𝜆𝜆30 −𝐼𝐼 ⊗ 𝜆𝜆21 −𝐼𝐼 ⊗ 𝜆𝜆12
−𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0 0

0 0 0 0 0 0
0 −𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 ⊗ 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

. 

Considering the matrices 𝐴𝐴03,𝐴𝐴30,𝐴𝐴12,𝐴𝐴21,𝜆𝜆30 and 𝜆𝜆03as nonsingular, we conclude that the rank of 𝑇𝑇 is 6𝑛𝑛2 and the rank of 𝑇𝑇 is14𝑛𝑛2. Thus, 
the rank of 𝛥𝛥0 can be found as 20𝑛𝑛2 < 36𝑛𝑛2. 
Since 𝛥𝛥0 is singular, the associated 𝕃𝕃2𝕋𝕋ℙ defined in (15) is also singular. Using a similar technique, the singularity of Khazanov linearization 
can be proven as well. 
 
Finding the rank of 𝚫𝚫𝟏𝟏 
Consider a related problem 
ℙ1′ (𝜆𝜆, 𝜇𝜇) = 𝐴𝐴00 + 𝜇𝜇𝐴𝐴01 + 𝜇𝜇2𝐴𝐴02 + 𝜇𝜇3𝐴𝐴03, 

ℙ2′ (𝜆𝜆,𝜇𝜇) = ℙ2(𝜆𝜆, 𝜇𝜇) = 𝜆𝜆3𝜆𝜆30 + 𝜆𝜆2𝜇𝜇𝜆𝜆21 + 𝜆𝜆𝜇𝜇2𝜆𝜆12 + 𝜇𝜇3𝜆𝜆03 + 𝜆𝜆2𝜆𝜆20 + 𝜆𝜆𝜇𝜇𝜆𝜆11 + 𝜇𝜇2𝜆𝜆02 + 𝜆𝜆𝜆𝜆10 + 𝜇𝜇𝜆𝜆01 + 𝜆𝜆00  (25) 

By linearizing ℙ1′ (𝜆𝜆, 𝜇𝜇), we get 

𝐿𝐿1′ (𝜆𝜆, 𝜇𝜇) = �
𝐴𝐴00 𝐴𝐴01 𝐴𝐴02

0 0 −𝐼𝐼
0 −𝐼𝐼 0

� + 𝜇𝜇 �
0 0 𝐴𝐴03
0 𝐼𝐼 0
𝐼𝐼 0 0

�. 

ℙ2′ (𝜆𝜆,𝜇𝜇) is linearized as in ℙ2(𝜆𝜆, 𝜇𝜇). 

𝐿𝐿2′ (𝜆𝜆, 𝜇𝜇) =

⎣
⎢
⎢
⎢
⎢
⎡
𝜆𝜆00 𝜆𝜆10 𝜆𝜆01 𝜆𝜆20 𝜆𝜆11 𝜆𝜆02

0 −𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 0 0 0
0 0 0 −𝐼𝐼 0 0
0 0 0 0 −𝐼𝐼 0
0 0 0 0 0 −𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

+ 𝜆𝜆

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 𝜆𝜆30 𝜆𝜆21 𝜆𝜆12
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

+ 𝜇𝜇

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 𝜆𝜆03
0 0 0 0 0 0
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

Now, these two linearizations can be rewritten in the form of (10), where the coefficient matrices are 

𝕃𝕃0
(1) = �

𝐴𝐴00 𝐴𝐴01 𝐴𝐴02
0 0 −𝐼𝐼
0 −𝐼𝐼 0

� , 𝕃𝕃1
(1) = 0, 𝕃𝕃2

(1) = �
0 0 𝐴𝐴03
0 𝐼𝐼 0
𝐼𝐼 0 0

� 

and 

𝕃𝕃0
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
𝜆𝜆00 𝜆𝜆10 𝜆𝜆01 𝜆𝜆20 𝜆𝜆11 𝜆𝜆02

0 −𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 0 0 0
0 0 0 −𝐼𝐼 0 0
0 0 0 0 −𝐼𝐼 0
0 0 0 0 0 −𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 𝕃𝕃1
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 𝜆𝜆30 𝜆𝜆21 𝜆𝜆12
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤
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𝕃𝕃2
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 𝜆𝜆03
0 0 0 0 0 0
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

. 

Then, 

𝛥𝛥1′ = 𝕃𝕃2
(1) ⊗𝕃𝕃0

(2) − 𝕃𝕃0
(1) ⊗𝕃𝕃2

(2). 

This shows that 𝛥𝛥1′  is non-singular.  

Let 𝛥𝛥1′  be singular. By Theorem 6, the system (10) has an eigenvalue (𝜂𝜂0, 0,𝜂𝜂2) such that (𝜂𝜂0, 𝜂𝜂2) ≠ (0,0). As in the general case, 𝕃𝕃2
(2) is 

nonsingular, so 𝜂𝜂0 ≠ 0, which indicates that the original problem has an eigenvalue of the form (0, 𝜇𝜇). Therefore, 𝛥𝛥1′  has to be nonsingular. 

By the Tracy-Singh product of 𝛥𝛥1, we have 

𝑇𝑇𝑇𝑇𝑃𝑃(𝛥𝛥1) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇11 𝑇𝑇12 𝑇𝑇13 𝑇𝑇14 𝑇𝑇15 𝑇𝑇16
0 𝑇𝑇22 0 0 0 0
𝑇𝑇31 0 𝑇𝑇33 0 0 0
0 0 0 𝑇𝑇44 0 0
0 0 0 0 𝑇𝑇55 0
0 0 𝑇𝑇63 0 0 𝑇𝑇66⎦

⎥
⎥
⎥
⎥
⎤

; 

where  

𝑇𝑇11 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 −𝐴𝐴00 ⊗ 𝜆𝜆03
0 0 0 0 0 0

−𝐴𝐴00 ⊗ 𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −𝐴𝐴00 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇12 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 −𝐴𝐴10 ⊗ 𝜆𝜆03
0 0 0 0 0 0

−𝐴𝐴10 ⊗ 𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −𝐴𝐴10 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇13 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 −𝐴𝐴01 ⊗ 𝜆𝜆03
0 0 0 0 0 0

−𝐴𝐴01 ⊗ 𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −𝐴𝐴01 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇14 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 −𝐴𝐴20 ⊗ 𝜆𝜆03
0 0 0 0 0 0

−𝐴𝐴20 ⊗ 𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −𝐴𝐴20 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇15 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 −𝐴𝐴11 ⊗ 𝜆𝜆03
0 0 0 0 0 0

−𝐴𝐴11 ⊗ 𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −𝐴𝐴11 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 
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𝑇𝑇16 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴03 ⊗ 𝜆𝜆00 𝐴𝐴03 ⊗ 𝜆𝜆10 𝐴𝐴03 ⊗ 𝜆𝜆01 𝐴𝐴03 ⊗ 𝜆𝜆20 𝐴𝐴03 ⊗ 𝜆𝜆11 𝐴𝐴03 ⊗ 𝜆𝜆02 − 𝐴𝐴02 ⊗ 𝜆𝜆03

0 −𝐴𝐴03 ⊗ 𝐼𝐼 0 0 0 0
−𝐴𝐴02 ⊗ 𝐼𝐼 0 −𝐴𝐴03 ⊗ 𝐼𝐼 0 0 0

0 0 0 −𝐴𝐴03 ⊗ 𝐼𝐼 0 0
0 0 0 0 −𝐴𝐴03 ⊗ 𝐼𝐼 0
0 0 −𝐴𝐴02 ⊗ 𝐼𝐼 0 0 −𝐴𝐴03 ⊗ 𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇31 = 𝑇𝑇63 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐼𝐼 ⊗ 𝜆𝜆00 𝐼𝐼 ⊗ 𝜆𝜆10 𝐼𝐼 ⊗ 𝜆𝜆01 𝐼𝐼 ⊗ 𝜆𝜆20 𝐼𝐼 ⊗ 𝜆𝜆11 𝐼𝐼 ⊗ 𝜆𝜆02

0 −𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 ⊗ 𝐼𝐼 0 0 0
0 0 0 −𝐼𝐼 ⊗ 𝐼𝐼 0 0
0 0 0 0 −𝐼𝐼 ⊗ 𝐼𝐼 0
0 0 0 0 0 −𝐼𝐼 ⊗ 𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇22 = 𝑇𝑇33 = 𝑇𝑇44 = 𝑇𝑇55 = 𝑇𝑇66 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 𝐼𝐼 ⊗ 𝜆𝜆03
0 0 0 0 0 0

𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

. 

Now, by the Tracy-Singh reordering of 𝛥𝛥1′ , we obtain 

𝑇𝑇𝑇𝑇𝑇𝑇(𝛥𝛥1′ ) = �
𝑇𝑇11 𝑇𝑇13 𝑇𝑇16
𝑇𝑇31
𝑇𝑇61

𝑇𝑇33
𝑇𝑇63 

𝑇𝑇36
𝑇𝑇66

�. 

If we perform Tracy-Singh reordering in 𝛥𝛥1, then we have 

                                           𝑇𝑇𝑇𝑇𝑇𝑇(𝛥𝛥1) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇11 𝑇𝑇13 𝑇𝑇16 𝑇𝑇14 𝑇𝑇15 𝑇𝑇12
𝑇𝑇31 𝑇𝑇33 0 0 0 0
0 𝑇𝑇63 𝑇𝑇66 0 0 0
0 0 0 𝑇𝑇44 0 0
0 0 0 0 𝑇𝑇55 0
0 0 0 0 0 𝑇𝑇22⎦

⎥
⎥
⎥
⎥
⎤

. 

Since 𝑇𝑇𝑇𝑇𝑇𝑇(𝛥𝛥1′ ) is nonsingular, the remaining diagonal block entries 𝑇𝑇22, 𝑇𝑇44, and 𝑇𝑇55of  𝑇𝑇𝑇𝑇𝑇𝑇(𝛥𝛥1) yield a maximal rank 9𝑛𝑛2, assuming 𝜆𝜆03 is 
nonsingular. Thus, this shows that the matrix 𝛥𝛥1 is of rank 27𝑛𝑛2. 
 

Finding the rank of 𝚫𝚫𝟐𝟐 
Consider a related problem, where 
 ℙ1′ (𝜆𝜆, 𝜇𝜇) = 𝐴𝐴00 + 𝜆𝜆𝐴𝐴10 + 𝜆𝜆2𝐴𝐴20 + 𝜆𝜆3𝐴𝐴30, 

 ℙ2′ (𝜆𝜆, 𝜇𝜇) = ℙ1(𝜆𝜆, 𝜇𝜇) = 𝜆𝜆3𝜆𝜆30 + 𝜆𝜆2𝜇𝜇𝜆𝜆21 + 𝜆𝜆𝜇𝜇2𝜆𝜆12 + 𝜇𝜇3𝜆𝜆03 + 𝜆𝜆2𝜆𝜆20 + 𝜆𝜆𝜇𝜇𝜆𝜆11 + 𝜇𝜇2𝜆𝜆02 + 𝜆𝜆𝜆𝜆10 + 𝜇𝜇𝜆𝜆01 + 𝜆𝜆00 (26) 

By linearizing ℙ1′ (𝜆𝜆, 𝜇𝜇), we obtain 

𝐿𝐿1′ (𝜆𝜆, 𝜇𝜇) = �
𝐴𝐴00 𝐴𝐴10 𝐴𝐴20

0 0 −𝐼𝐼
0 −𝐼𝐼 0

� + 𝜆𝜆 �
0 0 𝐴𝐴30
0 𝐼𝐼 0
𝐼𝐼 0 0

�. 

ℙ2′ (𝜆𝜆,𝜇𝜇) is linearized as in ℙ2(𝜆𝜆, 𝜇𝜇). 

𝐿𝐿2′ (𝜆𝜆,𝜇𝜇) =

⎣
⎢
⎢
⎢
⎢
⎡
𝜆𝜆00 𝜆𝜆10 𝜆𝜆01 𝜆𝜆20 𝜆𝜆11 𝜆𝜆02

0 −𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 0 0 0
0 0 0 −𝐼𝐼 0 0
0 0 0 0 −𝐼𝐼 0
0 0 0 0 0 −𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

+ 𝜆𝜆

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 𝜆𝜆30 𝜆𝜆21 𝜆𝜆12
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

+ 𝜇𝜇

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 𝜆𝜆03
0 0 0 0 0 0
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

.                                                                                    

Now, these two linearizations can be rewritten in the form of (10), where the coefficient matrices become 

𝕃𝕃0
(1) = �

𝐴𝐴00 𝐴𝐴10 𝐴𝐴20
0 0 −𝐼𝐼
0 −𝐼𝐼 0

� , 𝕃𝕃1
(1) = �

0 0 𝐴𝐴30
0 𝐼𝐼 0
𝐼𝐼 0 0

� , 𝕃𝕃2
(1) = 0, 

and 
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𝕃𝕃0
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
𝜆𝜆00 𝜆𝜆10 𝜆𝜆01 𝜆𝜆20 𝜆𝜆11 𝜆𝜆02

0 −𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 0 0 0
0 0 0 −𝐼𝐼 0 0
0 0 0 0 −𝐼𝐼 0
0 0 0 0 0 −𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 𝕃𝕃1
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 𝜆𝜆30 𝜆𝜆21 𝜆𝜆12
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

𝕃𝕃2
(2) =

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 𝜆𝜆03
0 0 0 0 0 0
𝐼𝐼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝐼𝐼 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

. 

Then, 

𝛥𝛥2′ = 𝕃𝕃0
(1) ⊗𝕃𝕃1

(2) − 𝕃𝕃1
(1) ⊗𝕃𝕃0

(2). 

We claim that 𝛥𝛥2′  of the related problem is nonsingular. 

Let us consider 𝛥𝛥2′  to be singular. By Theorem 6, the related system (10) has an eigenvalue (𝜂𝜂0, 𝜂𝜂1, 0) such that (𝜂𝜂0, 𝜂𝜂1) ≠ (0,0). As in the 
general case, the matrix 𝕃𝕃1

(2) is nonsingular, so 𝜂𝜂0 ≠ 0, which indicates that the original problem has an eigenvalue of the form (𝜆𝜆, 0). So 
𝛥𝛥2′  must be nonsingular. 
By the Tracy-Singh product of 𝛥𝛥2, we have, 

𝑇𝑇𝑇𝑇𝑃𝑃(𝛥𝛥2) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇11 𝑇𝑇12 𝑇𝑇13 𝑇𝑇14 𝑇𝑇15 𝑇𝑇16
𝑇𝑇21 𝑇𝑇22 0 0 0 0
0 0 𝑇𝑇33 0 0 0
0 𝑇𝑇42 0 𝑇𝑇44 0 0
0 0 𝑇𝑇53 0 𝑇𝑇55 0
0 0 0 0 0 𝑇𝑇66⎦

⎥
⎥
⎥
⎥
⎤

, 

where  

𝑇𝑇11 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 𝐴𝐴00 ⊗ 𝜆𝜆30 𝐴𝐴00 ⊗ 𝜆𝜆21 𝐴𝐴00 ⊗ 𝜆𝜆12
𝐴𝐴00 ⊗ 𝐼𝐼 0 0 0 0 0

0 0 0 0 0 0
0 𝐴𝐴00 ⊗ 𝐼𝐼 0 0 0 0
0 0 𝐴𝐴00 ⊗ 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇12 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 𝐴𝐴10 ⊗ 𝜆𝜆30 𝐴𝐴10 ⊗ 𝜆𝜆21 𝐴𝐴10 ⊗ 𝜆𝜆12
𝐴𝐴10 ⊗ 𝐼𝐼 0 0 0 0 0

0 0 0 0 0 0
0 𝐴𝐴10 ⊗ 𝐼𝐼 0 0 0 0
0 0 𝐴𝐴10 ⊗ 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇13 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 𝐴𝐴01 ⊗ 𝜆𝜆30 𝐴𝐴01 ⊗ 𝜆𝜆21 𝐴𝐴01 ⊗ 𝜆𝜆12
𝐴𝐴01 ⊗ 𝐼𝐼 0 0 0 0 0

0 0 0 0 0 0
0 𝐴𝐴01 ⊗ 𝐼𝐼 0 0 0 0
0 0 𝐴𝐴01 ⊗ 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇14 =

⎣
⎢
⎢
⎢
⎢
⎡
−𝐴𝐴30 ⊗ 𝜆𝜆00 −𝐴𝐴30 ⊗ 𝜆𝜆10 −𝐴𝐴30 ⊗ 𝜆𝜆01 𝐴𝐴20 ⊗ 𝜆𝜆30 − 𝐴𝐴30 ⊗ 𝜆𝜆20 𝐴𝐴20 ⊗ 𝜆𝜆21 − 𝐴𝐴30 ⊗ 𝜆𝜆11 𝐴𝐴20 ⊗ 𝜆𝜆12 − 𝐴𝐴30 ⊗ 𝜆𝜆02
𝐴𝐴20 ⊗ 𝐼𝐼 𝐴𝐴30 ⊗ 𝐼𝐼 0 0 0 0

0 0 𝐴𝐴30 ⊗ 𝐼𝐼 0 0 0
0 𝐴𝐴20 ⊗ 𝐼𝐼 0 𝐴𝐴30 ⊗ 𝐼𝐼 0 0
0 0 𝐴𝐴20 ⊗ 𝐼𝐼 0 𝐴𝐴30 ⊗ 𝐼𝐼 0
0 0 0 0 0 𝐴𝐴30 ⊗ 𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇15 =

⎣
⎢
⎢
⎢
⎢
⎡
−𝐴𝐴21 ⊗ 𝜆𝜆00 −𝐴𝐴21 ⊗ 𝜆𝜆10 −𝐴𝐴21 ⊗ 𝜆𝜆01 𝐴𝐴11 ⊗ 𝜆𝜆21 − 𝐴𝐴30 ⊗ 𝜆𝜆20 𝐴𝐴11 ⊗ 𝜆𝜆21 − 𝐴𝐴21 ⊗ 𝜆𝜆11 𝐴𝐴11 ⊗ 𝜆𝜆12 − 𝐴𝐴21 ⊗ 𝜆𝜆02
𝐴𝐴11 ⊗ 𝐼𝐼 𝐴𝐴21 ⊗ 𝐼𝐼 0 0 0 0

0 0 𝐴𝐴21 ⊗ 𝐼𝐼 0 0 0
0 𝐴𝐴11 ⊗ 𝐼𝐼 0 𝐴𝐴21 ⊗ 𝐼𝐼 0 0
0 0 𝐴𝐴11 ⊗ 𝐼𝐼 0 𝐴𝐴21 ⊗ 𝐼𝐼 0
0 0 0 0 0 𝐴𝐴21 ⊗ 𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 
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 𝑇𝑇16 

=

⎣
⎢
⎢
⎢
⎢
⎡
−𝐴𝐴12 ⊗ 𝜆𝜆00 −𝐴𝐴12 ⊗ 𝜆𝜆10 −𝐴𝐴12 ⊗ 𝜆𝜆01 𝐴𝐴02 ⊗ 𝜆𝜆21 − 𝐴𝐴30 ⊗ 𝜆𝜆20 𝐴𝐴02 ⊗ 𝜆𝜆21 − 𝐴𝐴12 ⊗ 𝜆𝜆11 𝐴𝐴02 ⊗ 𝜆𝜆12 − 𝐴𝐴12 ⊗ 𝜆𝜆02
𝐴𝐴02 ⊗ 𝐼𝐼 𝐴𝐴12 ⊗ 𝐼𝐼 0 0 0 0

0 0 𝐴𝐴12 ⊗ 𝐼𝐼 0 0 0
0 𝐴𝐴02 ⊗ 𝐼𝐼 0 𝐴𝐴12 ⊗ 𝐼𝐼 0 0
0 0 𝐴𝐴02 ⊗ 𝐼𝐼 0 𝐴𝐴12 ⊗ 𝐼𝐼 0
0 0 0 0 0 𝐴𝐴12 ⊗ 𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 

 

𝑇𝑇21 =

⎣
⎢
⎢
⎢
⎢
⎡
−𝐼𝐼 ⊗ 𝜆𝜆00 −𝐼𝐼 ⊗ 𝜆𝜆10 −𝐼𝐼 ⊗ 𝜆𝜆01 −𝐼𝐼 ⊗ 𝜆𝜆20 −𝐼𝐼 ⊗ 𝜆𝜆11 −𝐼𝐼 ⊗ 𝜆𝜆02

0 𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 ⊗ 𝐼𝐼 0 0 0
0 0 0 𝐼𝐼 ⊗ 𝐼𝐼 0 0
0 0 0 0 𝐼𝐼 ⊗ 𝐼𝐼 0
0 0 0 0 0 𝐼𝐼 ⊗ 𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇22 = 𝑇𝑇33 = 𝑇𝑇44 = 𝑇𝑇55 = 𝑇𝑇66 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 −𝐼𝐼 ⊗ 𝜆𝜆30 −𝐼𝐼 ⊗ 𝜆𝜆21 −𝐼𝐼 ⊗ 𝜆𝜆12
−𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0 0

0 0 0 0 0 0
0 −𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0
0 0 −𝐼𝐼 ⊗ 𝐼𝐼 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇42 =

⎣
⎢
⎢
⎢
⎢
⎡
−𝐼𝐼 ⊗ 𝜆𝜆00 −𝐼𝐼 ⊗ 𝜆𝜆10 −𝐼𝐼 ⊗ 𝜆𝜆01 −𝐼𝐼 ⊗ 𝜆𝜆20 −𝐼𝐼 ⊗ 𝜆𝜆11 −𝐼𝐼 ⊗ 𝜆𝜆02

0 𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 ⊗ 𝐼𝐼 0 0 0
0 0 0 𝐼𝐼 ⊗ 𝐼𝐼 0 0
0 0 0 0 𝐼𝐼 ⊗ 𝐼𝐼 0
0 0 0 0 0 𝐼𝐼 ⊗ 𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

, 

𝑇𝑇53 =

⎣
⎢
⎢
⎢
⎢
⎡
−𝐼𝐼 ⊗ 𝜆𝜆00 −𝐼𝐼 ⊗ 𝜆𝜆10 −𝐼𝐼 ⊗ 𝜆𝜆01 −𝐼𝐼 ⊗ 𝜆𝜆20 −𝐼𝐼 ⊗ 𝜆𝜆11 −𝐼𝐼 ⊗ 𝜆𝜆02

0 𝐼𝐼 ⊗ 𝐼𝐼 0 0 0 0
0 0 𝐼𝐼 ⊗ 𝐼𝐼 0 0 0
0 0 0 𝐼𝐼 ⊗ 𝐼𝐼 0 0
0 0 0 0 𝐼𝐼 ⊗ 𝐼𝐼 0
0 0 0 0 0 𝐼𝐼 ⊗ 𝐼𝐼 ⎦

⎥
⎥
⎥
⎥
⎤

. 

By using the Tracy-Singh reordering of 𝛥𝛥2′ , we have 

TSR(𝛥𝛥2′ ) = �
S11 S12 S14
S21
S41

S22
S42 

S24
S44

�. 

Again, with the Tracy-Singh reordering of 𝛥𝛥2, we obtain 

𝑇𝑇𝑇𝑇𝑇𝑇(𝛥𝛥2) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑇𝑇11 𝑇𝑇12 𝑇𝑇14 𝑇𝑇13 𝑇𝑇15 𝑇𝑇16
𝑇𝑇12 𝑇𝑇22 0 0 0 0
0 𝑇𝑇42 𝑇𝑇44 0 0 0
0 0 0 𝑇𝑇33 0 0
0 0 0 0 𝑇𝑇55 0
0 0 0 𝑇𝑇53 0 𝑇𝑇66⎦

⎥
⎥
⎥
⎥
⎤

. 

Since 𝑇𝑇𝑇𝑇𝑇𝑇(𝛥𝛥2′ ) is nonsingular, the remaining block entries 𝑇𝑇33, 𝑇𝑇53, 𝑇𝑇55 and 𝑇𝑇66 of 𝑇𝑇𝑇𝑇𝑇𝑇(𝛥𝛥2) give us a maximal rank of 12𝑛𝑛2, assuming 𝜆𝜆𝑖𝑖𝑗𝑗 
are nonsingular. Thus, this shows that the matrix 𝛥𝛥2 is of rank 30𝑛𝑛2 < 36𝑛𝑛2. 

In the next section, we consider a randomly generated ℂ𝕋𝕋𝕋𝕋ℙ, where the coefficients matrices are taken as real diagonal matrices. Then, 
we compare the eigenvalues obtained through the standard linearization and the Khazanov linearization processes. The results obtained in 
the case of the standard linearization via MatParEig Package (Muhič & Plestenjak, 2010) are considered the correct ones. On this basis, the 
approximation for the eigenvalues are found via an algorithm designed in MATLAB. 

The linearization-like method reduced ℂ𝕋𝕋𝕋𝕋ℙ into a nine-parameter linear problem, the 𝕃𝕃9𝕋𝕋ℙ. It requires more computational time to find 
the numerical solution due to an increase in the number of linear equations. Moreover, the dimensions of the corresponding ∆𝑖𝑖 matrices 
induced via Kronecker product also increase, making them sparse and computationally inefficient. Therefore, the linearization-like method 
is slower than the other two methods. The analytical comparison of the linearization-like method with the other two methods is omitted 
here due to the time complexity issues in calculating the corresponding Kronecker structure. 
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6. Numerical Example 
Consider a ℂ𝕋𝕋𝕋𝕋ℙ, 

ℙ1(𝜆𝜆, 𝜇𝜇)𝑥𝑥1 = (𝜆𝜆3𝐴𝐴30 + 𝜆𝜆2𝜇𝜇𝐴𝐴21 + 𝜆𝜆𝜇𝜇2𝐴𝐴12 + 𝜇𝜇3𝐴𝐴03 + 𝜆𝜆2𝐴𝐴20 + 𝜆𝜆𝜇𝜇𝐴𝐴11 + 𝜇𝜇2𝐴𝐴02 + 𝜆𝜆𝐴𝐴10 + 𝜇𝜇𝐴𝐴01 + 𝐴𝐴00)𝑥𝑥1 = 0; 

 ℙ2(𝜆𝜆, 𝜇𝜇)𝑥𝑥2 = (𝜆𝜆3𝜆𝜆30 + 𝜆𝜆2𝜇𝜇𝜆𝜆21 + 𝜆𝜆𝜇𝜇2𝜆𝜆12 + 𝜇𝜇3𝜆𝜆03 + 𝜆𝜆2𝜆𝜆20 + 𝜆𝜆𝜇𝜇𝜆𝜆11 + 𝜇𝜇2𝜆𝜆02 + 𝜆𝜆𝜆𝜆10 + 𝜇𝜇𝜆𝜆01 + 𝜆𝜆00)𝑥𝑥2 = 0; 

with randomly generated diagonal matrices, 𝐴𝐴𝑖𝑖𝑗𝑗 and 𝜆𝜆𝑖𝑖𝑗𝑗 of order 2 × 2. 

                𝐴𝐴00 = �0.8147 0
0 0.9134� ,𝐴𝐴10 = �0.6324 0

0 0.5469�, 𝐴𝐴01 = �0.9575 0
0 0.9706�,   

𝐴𝐴20 = �0.9572 0
0 0.1419� ,𝐴𝐴11 = �0.4218 0

0 0.9595� ,𝐴𝐴02 = �0.6557 0
0 0.9340�, 

 𝐴𝐴30 = �0.6787 0
0 0.3922� ,𝐴𝐴21 = �0.6555 0

0 0.0318� ,𝐴𝐴12 = �0.2769 0
0 0.8235�,  

𝐴𝐴03 = �0.6948 0
9 0.0344�, 

𝜆𝜆00 = �0.1869 0
0 0.6463� ,𝜆𝜆10 = �0.7094 0

0 0.6797� ,𝜆𝜆01 = �0.6551 0
0 0.4984�,  

𝜆𝜆20 = �0.9597 0
0 0.2238� ,𝜆𝜆11 = �0.7513 0

0 0.6991� ,𝜆𝜆02 = �0.8909 0
0 0.1386�,  

𝜆𝜆30 = �0.1493 0
0 0.2543� ,𝜆𝜆21 = �0.8143 0

0 0.3500� ,𝜆𝜆12 = �0.1966 0
0 0.4377�,  

𝜆𝜆03 = �0.3517 0
0 0.5497�. 

To compare the numerical results obtained from Standard linearization and Khanzadeh linearization, we used the MultiParEig toolbox 
developed by Plestenjak (2023) on a Windows 11 operating system with an AMD Ryzen 5 5500U 2.10 GHz processor. The results are shown 
below. 

Table 1 

                                 Standard Linearization        Khazanov Linearization 

           𝜆𝜆 𝜇𝜇             𝜆𝜆 𝜇𝜇 

1.0092+0.0000i -1.4499+0.0000i 1.0092 + 0.0000i -1.4499+0.0000i 

-0.3421+0.0000i -0.7805+0.0000i -0.3421 +0.0000i -0.7805+0.0000i 

-0.3432±0.8405i -0.9510±0.0087i -0.3432±0.8405i   -0.9510±0.0087i 

-1.3114±0.2309i -0.9173±1.4685i -1.3114±0.2309i -0.9173±1.4685i 

-1.0672±0.1223i -0.3852±0.9591i -1.0672±0.1223i -0.3852±0.9591i 

-0.7862+0.0000i -0.5743 +0.0000i -0.7862 +0.0000i -0.5743+0.0000i 

0.3349±0.0446i -0.5398±0.8207i  0.3349±0.0446i -0.5398±0.8207i 

-1.0856+0.0000i 0.7836 + 0.0000i -1.0854+0.0000i 0.7776 + 0.0000i 

-1.5614±0.2974i -0.0133±1.7493i -1.5614±0.2974i -0.0133±1.7493i 

-1.0610±0.0111i -0.0168±0.5738i -1.0602±0.0109i -0.0098±0.5834 
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 0.3768±0.6614i 0.3238±1.0721i 0.3768±0.6614i 0.3238±1.0721i 

-0.1068±1.2095i -0.0491±0.5295i -0.4227±3.7101i 1.8669±0.5291i 

-1.0224±0.5267i -0.6265±0.5461i 0.2789±1.4519i   -1.1613±0.1619i 

-1.0978+0.0000i -0.7238 +0.0000i -1.0978+0.0000i   -0.7238+0.0000i 

1.1408 + 0.0000i -90.1367+0.0000i 0.3469 + 0.0000i -1.0288+0.0000i 

-0.3051±0.7180i 0.1179±0.8142i -0.4267±0.6475i   0.1663±0.9384i 

-7.9598±6.4034i -4.9047±5.8520i 0.6625±0.4573i 0.3300±1.3700i 

0.8733±0.0768i 0.0933±1.6336i 0.5203±0.7182i -1.0214±0.4763i 

0.3425±1.2010i -0.7668±0.1594i 0.2367±1.0175i -0.7182±0.4862i 

-0.0348±0.3753i -0.8454±0.1057i -1.0498±0.4383i -0.4927±0.4840i 

 0.2789±1.4519i -1.1613±0.1619i -0.4080±1.4486i   0.2030±0.6769i 

By Bézout's theorem, a ℂ𝕋𝕋𝕋𝕋ℙ has 9n2 eigenvalues; therefore, the problem considered above has 9𝑛𝑛2 = 9.22 = 36 eigenvalues. Both 
methods calculate all the eigenvalues of the problem. The Standard linearization provides the exact eigenvalues. Through comparisons of 
the eigenvalues obtained by Khazanov linearization, we find that most eigenvalues, except for a few, match those obtained from the Standard 
linearization. In the MATLAB environment, the execution time for the Standard Linearization process is 1.267792 seconds, while Khazanov 
Linearization takes 0.431789 seconds. The Khazanov linearization is faster due to the small size of the coefficient matrix and the absence of 
antidiagonal elements. For small-ordered matrices, Khazanov linearization may be preferable to Standard Linearization. However, Standard 
linearization consistently yields better results when dealing with higher-order matrices. 
 
7. Conclusion 

We described the Kronecker canonical structures of ℂ𝕋𝕋𝕋𝕋ℙ 
obtained through different linearization processes, including 
standard linearization, Khazanov linearization, and 
transformation to 𝕃𝕃9𝕋𝕋ℙ. These approaches can be used to find 
numerical solutions of ℂ𝕋𝕋𝕋𝕋ℙ by applying existing numerical 
methods to solve 𝕃𝕃𝕃𝕃𝕋𝕋ℙs. We compared the first two singular 
linearizations through a numerical example. The calculation via 
𝕃𝕃9𝕋𝕋ℙ is omitted here due to its higher computational time 
requirements. The Kronecker structures of ∆𝑖𝑖 matrices for i:=0:2 
have not been extensively studied because of their complex 
structures in ℂ𝕋𝕋𝕋𝕋ℙ. These structures and their ranks can assist in 
developing proofs for the number of manifolds via algebraic 
geometry in various methods (Dong, (2022)). All results are novel 
and serve as a foundation for further study of the Delta matrices 
of ℙ𝕋𝕋𝕋𝕋ℙ of degree k. 
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