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Abstract: In this study, a nonparametric test was proposed for the two-sample scale problem, when sample observations are randomly 

right censored. The proposed test was based on the extremes of observations as an extension of the widely used Gehan’s test for the 

two-sample problem. Critical values were obtained through simulations of various lifetime distributions at various sample sizes. Power 

performance for the proposed test was investigated considering various distributions. Upon comparing with the Gehan’s test, it was found 

that the proposed test has more statistical power and efficiency for some special cases. An empirical experiment with a real-life data set 

was also presented.  
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1. Introduction 
 

In statistical analysis, nonparametric approaches do not 

require any assumptions regarding the distribution of a 

population. Two-sample nonparametric tests are employed 

to compare the distribution of two samples. Two-sample 

scale problems arise when the analyzer is interested in 

determining whether the populations follow the same 

distribution, or when there is a difference in their scale 

parameters. This issue has numerous applications in the field 

of Agriculture, Engineering, Business, Trade, Industries, and 

Medicine. For the two-sample scale problem, nonparametric 

tests have been proposed by Mood (1954), Sukhatme (1957), 

Kössler (1994), Kössler & Kumar (2010), and Goyal & Kumar 

(2020). 

 

In real life, there are certain situations, where we do not 

have the complete information about the data, there 

involves the role of censoring, these cases are of much 

practical use. We say that an observation is censored when 

we do not observe it completely. Censored observations can 

be statistically-treated in various forms, ranging from 

parametric to nonparametric approaches. Several 

nonparametric tests are also available for censored data. 

Kaplan & Meier’s (1958) method is marked as a great finding 

in the field of survival analysis, especially from the 

perspective of nonparametric approaches. This impelled the 

advancement of existing nonparametric approaches in the 

presence of censored data. Some two-sample nonparametric 

tests with censored data are discussed hereafter.  

In the context of industrial life-testing, Halperin (1960) 

considered a special case of that by Wilcoxon (1945), which 

involved statistics for comparing two samples in the 

presence of type-I censoring. A rank order theory for the 

two-sample problem was developed by Rao, Savage & Sobel 

(1960) when the data were censored. To arrive at an early 

decision, a sequential modification to Wilcoxon’s test was 

proposed by Alling (1963). Furthermore, for comparing two 

samples in the presence of random censoring, Gehan (1965) 

proposed a generalized form of Wilcoxon’s test, conditioned 

on the observational pattern. Efron (1967) proposed a two-

sample problem with censored data as an extension of 

Gehan’s method. Mantel (1967) proposed an approach to 

simplify both the method of computation and determination 

of the permutation distribution of Gehan’s statistic. Lee, 

Desu & Gehan (1975) presented a Monte-Carlo study on a 

series of two-sample tests with or without censoring. For an 

in-depth literature review, one can refer to the monographs: 

Survival analysis by Miller (2011) and Lifetime Data: 

Statistical Models and Methods by Deshpande & Purohit 

(2015). 

 

The statistical problem we have considered in this study 

mostly arises in the field of medicine, wherein we compare 

two treatments for their effects on patients’ health and life, 

where the observations under study are the lifetimes of 

patients. A common problem in clinical trials arises when the 

data is not observed completely, or we have partial 

information about it; we consider such an observation to be 

censored. We considered random censoring, as it is mostly 

used in clinical trials due to the failure to follow-up or 

termination of the study. 
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The proposed distribution-free two-sample test is based 

on the extension of Gehan’s test statistics, whereby for each 

individual, the observation is either time to censoring or time 

to failure. From the point when the study was initiated, an 

observation was noted as time to failure if the patient was 

found to be dead or relapsed before a pre-fixed time T. 

Moreover, it was noted as time to censored if the patient was 

alive until time T, or in remission at time T. In other words, 

for two different treatments if n1 (n2) is the total patients that 

participated in the study, out of which r1 (r2) are censored at 

time T, then n1-r1 (n2-r2) individuals have failed.  Two-sample 

scale problem involves comparing the survival of these n1  

and n2 patients. The objective of the study is to propose a 

new test that has more efficiency and power with respect to 

Gehan’s test for the two-sample scale problem. 

  

The remainder of this paper is structured as follows. 

Section 2 defines a newly proposed test statistic. The mean 

and variance of the test statistic are evaluated in Section 3. 

Critical points of the test statistic at various sample sizes and 

percentage censoring are given in Section 4, along with a 

comparison of critical points of Gehan’s test statistic. The 

asymptotic relative efficiency of the test statistic is derived in 

Section 5, and a real-life data example for the statistic is 

illustrated in Section 6. The statistical power of the proposed 

test is given in comparison to the statistical power of Gehan’s 

test at various sample sizes and percentage censoring in 

Section 7. 

 

2. The Proposed Test Statistic 
 

Let us suppose that we have two samples, 𝑋 and 𝑌, with 

𝑛1 , 𝑛2 individuals, randomly allocated to two treatments, 𝐴 

and 𝐵, respectively. Suppose that an experiment was 

conducted for a fixed time 𝑇, and all the individuals were 

followed up. If 𝑥𝑖 , 𝑦𝑗  represents the time to failure and 𝑥𝑖
′, 𝑦𝑗

′ 

represents the time to censoring for all (𝑖 =

1, 2, … , 𝑛1 and 𝑗 = 1, 2, … , 𝑛2), we have the following 

observations: 

 

𝑥1
′ , 𝑥2

′ , … , 𝑥𝑟1 
′ ,              𝑟1 censored

𝑥𝑟1+1, 𝑥𝑟1+2, … , 𝑥𝑛1
,              𝑛1 − 𝑟1 failures

}     treatment 𝐴, 

𝑦1
′ , 𝑦2

′ , … , 𝑦𝑟2 
′ ,              𝑟2 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

𝑦𝑟2+1, 𝑦𝑟2+2, … , 𝑦𝑛2
,              𝑛2 − 𝑟2 failures

}     treatment 𝐵. 

 

Furthermore, the cumulative distribution functions of 

time to failure 𝑥𝑖 , 𝑦𝑗  are 𝐹1(𝑥), 𝐹2(𝑦) and that of the time to 

censoring 𝑥𝑖
′, 𝑦𝑗

′ are 𝐺1(𝑥), 𝐺2(𝑦). 

The null hypothesis is: 

 

𝐻0: 𝐹1(𝑡) = 𝐹2(𝑡),  (𝑡 ≤ 𝑇) (Treatments 𝐴 and 𝐵 

are equally effective), 

 

against the alternative 

 

𝐻1: 𝐹1(𝑡) = 𝐹2(𝜃𝑡),  (𝑡 ≤ 𝑇   &   𝜃 ≠ 1)  

 

(Treatments 𝐴 and 𝐵 are significantly different.) 

  

In the proposed test, we have taken a sub-sample of size 

two from each sample, and compared their extremes to 

derive more information from the samples. Let (𝑥1, 𝑥2) and 

(𝑦1, 𝑦2) be the uncensored sub-samples chosen from 

samples 𝑋 and 𝑌 respectively. If the maximum of the sub-

sample (𝑥1, 𝑥2) from the random sample 𝑋 treated with 𝐴 is 

greater than the maximum of the subsample (𝑦1, 𝑦2) from 

the random sample 𝑌 treated with 𝐵, then we assign 1 to the 

kernel 𝑈𝑖𝑗 . Otherwise, we assign −1 to the kernel 𝑈𝑖𝑗 . 

  

If in the subsample from sample 𝑋, one observation is 

censored and the other is uncensored, with the censored 

value greater than the uncensored value, and observations 

in the subsample from sample 𝑌 are uncensored. Here, if the 

maximum of the subsample of two observations (𝑥1
′ , 𝑥2) 

from sample  𝑋 is greater than the maximum of the 

subsample of any two observations (𝑦1, 𝑦2) from sample 𝑌, 

we assign 1 to the kernel 𝑈𝑖𝑗 . A similar procedure is done for 

the opposite case, i.e., when one censored and one 

uncensored observation comes in the sub-sample from 

sample 𝑌, and both uncensored come in the subsample from 

sample 𝑋, we assign −1 to the kernel 𝑈𝑖𝑗 . For remainder of 

the cases, we assign zero to the kernel 𝑈𝑖𝑗 . In mathematical 

terms, the kernel for the proposed test is: 
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𝑈𝑖𝑗 = {

1,   if 𝑀𝑎𝑥(𝑥𝑖1
, 𝑥𝑖2

) > 𝑀𝑎𝑥(𝑦𝑗1
, 𝑦𝑗2

) or 𝑀𝑎𝑥(𝑥𝑖1

′ , 𝑥𝑖2
) ≥ 𝑀𝑎𝑥(𝑦𝑗1

, 𝑦𝑗2
)

−1,    if 𝑀𝑎𝑥(𝑥𝑖1
, 𝑥𝑖2

) < 𝑀𝑎𝑥(𝑦𝑗1
, 𝑦𝑗2

) or 𝑀𝑎𝑥(𝑥𝑖1
, 𝑥𝑖2

) ≤ 𝑀𝑎𝑥(𝑦𝑗1

′ , 𝑦𝑗2
)

0,      elsewhere,                                                                                                  

}       (1) 

 

 

where 𝑖1 ≠ 𝑖2 in (1, 2, … , 𝑛1) and 𝑗1 ≠ 𝑗2 in (1, 2, … , 𝑛2) 

Define the statistic 𝑉 = ∑ 𝑈𝑖𝑗𝑖,𝑗 , where the sum is extended 

over all 𝑛1, 𝑛2 combinations. There will be a contribution to 

statistic 𝑉 for all possible comparisons where both the 

patients have failed and, in all comparisons, where a patient 

who is censored has more survival than one who has failed 

earlier. 

 

3. The Mean and Variance of Test Statistic 
 

We have considered the same observational pattern 

described by Gehan (1965), i.e., if we have 𝑛1, 𝑛2 

observations that can be settled in the following 

observational pattern: 

 

 

 

 

 

 

 

 

 

 

when we rank the data, then 𝑚𝑖’s are the total uncensored 

observations at the 𝑖𝑡ℎ  rank with dissimilar values, and 𝑙𝑖 ’s 

are the total randomly right censored observations with 

values larger than the observational value at the 𝑖𝑡ℎ  rank, but 

should be smaller than the observational value at the 

(𝑖 + 1) 𝑡ℎ rank. 

 

The dots at the upright line represent the ordered ranks 

of the dissimilar values of time to failure observations, and 

these fall at 𝑠 dissimilar failure dots. Any observation that has 

either censored or failed can be characterized in the manner 

of the above pattern. Prior to the first failure, any censored 

observation will be counted as 𝑙1 with 𝑚1 = 0. Generally, 

these observations do not yield any difference between 𝐴 

and 𝐵 treatments. Therefore, we omit these observations. As 

our calculation is restricted to the defined observational 

pattern, the omission of these observations does not have 

any consequence on mean and variance.  

 

For example, if we have the following sample of survival 

times of patients (in months): 

6, 8, 10+, 11, 11+, 13, 14+, 15 + (the + sign represents a 

censored observation at that particular point), the 

observational pattern will be: 

Suppose, 𝐻0 is true, i.e., the survival of patients in both 

the treated groups is same. We consider the conditional 

mean denoted by 𝐸(𝑉|𝑃, 𝐻0) and variance by 𝑣𝑎𝑟(𝑉|𝑃, 𝐻0) 

of 𝑉 under 𝐻0, where 𝑃 is the observational pattern. The 

expectation was considered over the possible number of 

samples (
𝑛1 + 𝑛2

𝑛1
)  that are equally likely and follow same 

defined observational pattern. Due to symmetry, we can 

easily observe:  

                                       𝐸(𝑉|𝑃, 𝐻0) = 𝐸(∑ 𝑈𝑖𝑗𝑖,𝑗 |𝑃, 𝐻0) = 0.                                         (2) 

 
The variance of 𝑉 under 𝐻0 is restricted to the defined pattern 𝑃, and can be defined as: 

 

                           𝑣𝑎𝑟(𝑉|𝑃, 𝐻0) = 𝐸 (∑ 𝑈𝑖𝑗

𝑖,𝑗

− 𝐸 (∑ 𝑈𝑖𝑗

𝑖,𝑗

)| 𝑃, 𝐻0)

2

.                                 (3) 

 
From eq. (2), we know that 𝐸(∑ 𝑈𝑖𝑗𝑖,𝑗 |𝑃, 𝐻0) = 0. Thus, eq. (3) becomes: 

 

𝑣𝑎𝑟(𝑉|𝑃, 𝐻0) = 𝐸 (∑ ∑ 𝑈𝑖𝑗
2

𝑛2

𝑗=1

𝑛1

𝑖=1

+ ∑ ∑ 𝑈𝑖𝑗𝑈𝑖′𝑗

𝑛2

𝑗=1

𝑛1

𝑖≠𝑖′=1

+ ∑ ∑ 𝑈𝑖𝑗𝑈𝑖𝑗′

𝑛2

𝑗≠𝑗′=1

𝑛1

𝑖=1

 + ∑ ∑ 𝑈𝑖𝑗𝑈𝑖′𝑗′

𝑛2

𝑗≠𝑗′=1

𝑛1

𝑖≠𝑖′=1

| 𝑃, 𝐻0).             (4) 
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After evaluating each term of eq. (4), we obtain: 

 

𝑣𝑎𝑟(𝑉|𝑃, 𝐻0) =
24 (

𝑛1 + 𝑛2 − 4
𝑛1 − 2

)

(
𝑛1 +  𝑛2

𝑛1
)

𝐾1 + {
(

𝑛1 + 𝑛2 − 6
𝑛1 − 4

)

(
𝑛1 +  𝑛2

𝑛1
)

+
(

𝑛1 + 𝑛2 − 6
𝑛2 − 4

)

(
𝑛1 + 𝑛2

𝑛1
)

} 𝐾2.                     (5) 

In eq. (5), the coefficient of 𝐾1 is the proportion of times 

a specific pair of observations  (𝑖, 𝑗 ) turns up in samples 𝑋 

and 𝑌. Similarly, the coefficient of 𝐾2 is the proportion of 

times a specific pair (𝑖, 𝑖′and 𝑖 ≠ 𝑖′) turns up in any one of 

the samples with observation 𝑗 from the other sample. Here 

 

𝐾1 = ∑ [(
𝑚𝑖

1
) (

𝑀𝑖−1

3
) + (

𝑚𝑖

1
) (

𝑛1 + 𝑛2 − 𝑀𝑖 − 𝐿𝑖−1

3
) + (

𝑙𝑖

1
) (

𝑀𝑖

3
)

𝑠

𝑖=1

 

+ (
𝑚𝑖

1
) (

𝑀𝑖−1

1
) (

𝑛1 + 𝑛2 − 𝑀𝑖 − 𝐿𝑖−1

2
) + (

𝑚𝑖

1
) (

𝑀𝑖−1

2
) (

𝑛1 + 𝑛2 − 𝑀𝑖 − 𝐿𝑖−1

1
)],   (6) 

 
where the first and second terms in eq. (6) represent the 

total number of ways of pairing any failed observation at 𝑖𝑡ℎ  

rank with any three observations at a lesser rank and any 

three observations of a rank greater than 𝑖 respectively. The 

third term represents the total number of ways of pairing a 

censored observation immediately after the 𝑖𝑡ℎ  rank, with 

any three that have failed 

earlier. The fourth term shows the total number of ways of 

pairing any failed observation with one of rank lesser than 𝑖 

and two other observations with a rank greater than 𝑖. The 

last term represents the total number of ways of pairing any 

failed observation with any two observations of a rank lesser 

than 𝑖 and one other observation with a rank greater than 𝑖. 

Similarly, 

 

𝐾2 = ∑ [120 (
𝑚𝑖

1
) (

𝑀𝑖−1

5
) + 56 (

𝑚𝑖

1
) (

𝑛1 +  𝑛2 − 𝑀𝑖 − 𝐿𝑖−1

5
) + 120 (

𝑙𝑖

1
) (

𝑀𝑖

5
)

𝑠

𝑖=1

 

+56 (
𝑚𝑖

1
) (

𝑀𝑖−1

1
) (

𝑛1 + 𝑛2 − 𝑀𝑖 − 𝐿𝑖−1

4
) − 72 (

𝑚𝑖

1
) (

𝑀𝑖−1

4
) (

𝑛1 +  𝑛2 − 𝑀𝑖 − 𝐿𝑖−1

1
) 

+56 (
𝑚𝑖

1
) (

𝑀𝑖−1

2
) (

𝑛1 +  𝑛2 − 𝑀𝑖 − 𝐿𝑖−1

3
) + 24 (

𝑚𝑖

1
) (

𝑀𝑖−1

3
) (

𝑛1 + 𝑛2 − 𝑀𝑖 − 𝐿𝑖−1

2
)]  (7) 

 

 
The first and second terms within square brackets in eq. 

(7), represent the total number of ways of pairing any failed 

observation at the 𝑖𝑡ℎ  rank with any five observations of a 

lesser rank and any five of a rank greater than 𝑖 respectively. 

The third term shows the total number of ways of pairing any 

censored observation immediately after the 𝑖𝑡ℎ  rank with 

any five that have failed earlier. The Fourth term shows the 

total number of ways of pairing any failed observation with 

a rank lesser than 𝑖 and four other observations with a rank 

greater than 𝑖. The fifth term 

shows the total number of ways of pairing any failed 

observation with any four observations of a rank lesser than 

𝑖 and one other observation with a rank greater than 𝑖. The 

sixth term shows the total number of ways of pairing any 

failed observation with any two observations of a rank lesser 

than 𝑖 and three other observations with a rank greater than 

𝑖. The last term represents the total number of ways of 

pairing any failed observation with any three observations of 

a rank lesser than 𝑖 and two other observations with a rank 

greater than 𝑖, and 

 
𝑀𝑗 = ∑ 𝑚𝑖

𝑗
𝑖=1 , 𝑀0 = 0, 

𝐿𝑗 = ∑ 𝑙𝑖
𝑗
𝑖=1   ,    𝐿0 = 0. 

 

𝑚𝑖 and 𝑙𝑖 are in their original meanings, as defined initially in this Section. 

 
4. Critical Points 

 
In hypothesis testing, we determine whether sufficient 

evidence exists from the sample to accept or reject 𝐻0. 

Critical points are essentially the cut-off values such that if 

the calculated test statistic value comes out to be greater 

than the cut-off value, we reject 𝐻0; otherwise, we do not 

reject 𝐻0. These values are specific for a test statistic that 

depends on the type of test and the level of significance 𝛼. 

Using this concept, critical points are found using a 



 

36 
 

Regular Issue Malaysian Journal of Science 

DOI:https//doi.org/10.22452/mjs.vol42no1.4 

Malaysian Journal of Science 42(1): 32-41 (February 2023) 

simulation study for both the tests 𝑉 (proposed) and 𝐺 (by 

Gehan 1965). We consider three different lifetime 

distributions (Lindley, Exponential and Weibull) for 

generating time to failure observations and Exponential 

distribution for generating time to censored observations. 

Two samples, each of size 𝑛, are generated from these 

distributions, and the standardized test statistic value can be 

found using the following formula: 

 

                                                        𝑍 =
𝑉 − 𝐸(𝑉|𝑃, 𝐻0)

√𝑣𝑎𝑟(𝑉|𝑃, 𝐻0)
                                                                  (8) 

 
where 𝐸(𝑉|𝑃, 𝐻0) and 𝑣𝑎𝑟(𝑉|𝑃, 𝐻0) are given in eqs. (2) 

and (5). We then find 𝑍𝛼  such that 𝑃(𝑍 > 𝑍𝛼) = 0.025. This 

process is simulated 10,000 times, and the critical points are 

found as the average of 𝑍𝛼-values. Critical points are given 

in Tables 1 − 3 for various censoring percentages (𝑝𝑐𝑒𝑛𝑠) 

and sample sizes (𝑛1 =  𝑛2 = 𝑛) for each distribution. 

 
Table 1. Critical points of the proposed test, when the time to failure distribution is Lindley and  

time to censoring distribution is Exponential 

Test 𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 

       𝑝𝑐𝑒𝑛𝑠 
𝑛 

0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 

10 2.91112 3.35186 1.97061 3.31972 1.47104 3.24155 1.21353 3.07304 
15 2.89617 3.80541 1.96009 3.91377 1.55739 3.86303 1.38231 3.72432 
20 2.84070 4.27193 2.04971 4.46372 1.67048 4.40178 1.51094 4.23448 
25 2.92921 4.74102 2.12339 4.92879 1.76357 4.88847 1.63321 4.73802 
30 3.01728 5.10966 2.24109 5.39651 1.89059 5.35712 1.77043 5.16320 

 
Table 2. Critical points of the proposed test, when both time to failure and  

time to censoring distributions are Exponential 

Test 𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 

       𝑝𝑐𝑒𝑛𝑠 

𝑛 
0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 

10 2.92186 3.38056 1.91547 3.32851 1.43057 3.24729 1.21353 3.06260 

15 2.90303 3.91751 1.95929 3.93480 1.53092 3.88975 1.33974 3.70345 

20 2.88096 4.40868 2.04536 4.52102 1.64325 4.41977 1.46696 4.22876 

25 2.93422 4.96588 2.14505 5.00451 1.75391 4.87901 1.60609 4.70970 

30 3.02035 5.34874 2.25501 5.50358 1.86846 5.35288 1.73120 5.11489 

 
Table 3. Critical points of the proposed test, when the time to failure distribution is Weibull and  

time to censoring distribution is Exponential 

Test 𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 

       𝑝𝑐𝑒𝑛𝑠 
𝑛 

0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 

10 2.93616 3.44826 1.91492 3.33473 1.38603 3.15828 1.13679 2.90428 
15 2.94675 4.09885 1.98431 4.013749 1.50179 3.81971 1.27410 3.52024 
20 2.98755 4.72489 2.07529 4.69799 1.63558 4.44922 1.43581 4.07413 
25 3.03894 5.30250 2.21491 5.23519 1.76892 4.95976 1.55849 4.51801 
30 3.16017 5.86804 2.31089 5.76923 1.90151 5.42111 1.68737 4.98331 

 
5. Asymptotic Relative Efficiency 

 
 Herein, we find the asymptotic relative efficiency (𝐴𝑅𝐸) of the proposed test statistic 𝑉 relative to the usual 𝐹 − test, 

assuming Exponential lifetime distribution. Let us suppose that the time to failure probability density function of a patient who is 

receiving treatment 𝐴 is given as 

 

𝑓1(𝑥) = 𝜙 exp(−𝜙𝑥), 

 

and that for a patient who is receiving treatment 𝐵 is given as 
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𝑓2(𝑦) = 𝜃𝜙 exp(−𝜃𝜙𝑦). 

 

Our interest is to test the hypothesis: 

 

𝐻: 𝐹1(𝑡) = 𝐹2(𝜃𝑡)           (𝑡 ≤ 𝑇). 

 

 Thus, our null hypothesis would be, 𝐻0: 𝜃 = 1. This type of test would be relevant in situations when we are interested 

in determining whether there is any constant proportion (𝜃) of failure times of the patients who are receiving treatment 𝐵 to that 

of who are receiving treatment 𝐴. 

 

Another competent test for the above hypothesis is to consider �̅�1 �̅�2⁄ , following 𝐹- distribution with degrees of freedom 

(2(𝑛1 −  𝑟1), 2(𝑛2 −  𝑟2)), where 

 

𝑡1̅ =
(∑ 𝑥𝑖

′𝑟1
𝑖=1 +∑ 𝑥𝑖

𝑛1
𝑖=𝑟1+1 )

(𝑛1−𝑟1)
,      𝑡2̅ =

(∑ 𝑦𝑖
′𝑟2

𝑖=1 +∑ 𝑦𝑖
𝑛2
𝑖=𝑟2+1 )

(𝑛2−𝑟2)
. 

 

We aim to find the 𝐴𝑅𝐸 of the proposed test relative to 𝐹 test in the situation, when all the individuals enter study at time zero 

and the experiment is stopped at time 𝑇. The 𝐴𝑅𝐸 of the proposed 𝑉 test relative to 𝐹 test is given by, 

 

                           𝐴𝑅𝐸𝑉𝐹 = lim
𝑛→∞

(
𝜕𝐸(𝑛−2𝑉)

𝜕𝜃
|

𝜃=1
)

2

(𝑛𝑣𝑎𝑟(𝑛−2𝑉|𝐻0))
×

(𝑛𝑣𝑎𝑟(𝑧|𝐻0))

(
𝜕𝐸(𝑧)

𝜕𝜃
|

𝜃=1
)

2 .                                      (9) 

 

For 𝐹 test, it is appropriate to transform the 𝐹 statistic to 𝑧 =
1

2
log(𝐹), where 𝑧 is following the Normal distribution 

asymptotically with 𝑣𝑎𝑟 ≅
1

2
(

1

2(𝑛1− 𝑟1)
+

1

2(𝑛2− 𝑟2)
) and 

 

𝐸(𝑧) = 𝐸𝑠𝐸(𝑧|𝑠), 
 

𝑣𝑎𝑟(𝑧|𝐻0) = 𝐸𝑠𝑣𝑎𝑟(𝑧|𝐻0, 𝑠) + 𝑣𝑎𝑟𝑠𝐸(𝑧|𝐻0, 𝑠). 
 

 

Herein, the observational pattern is defined by the total 

sample size (2𝑛) and total failure observations preceding 

time 𝑇. The expectations and variances of 𝑧 are calculated 

under the conditional pattern, where 𝑠 = 2𝑛 − 𝑟1 − 𝑟2 is 

fixed, and then allow variation in 𝑠. The calculations are 

asymptotic as 𝑛, 𝑠 → ∞. Under 𝐻0, 𝑠 follows a Binomial 

distribution with mean 2𝑛(1 − 𝑒−𝜙𝑇). Thus, 

 

                                   𝐸(𝑧) ≅
1

2
log 𝜃   and     

𝜕𝐸(𝑧)

𝜕𝜃
|

𝜃=1

=
1

2
 ,                                    (10) 

 

                                         𝑣𝑎𝑟(𝑧|𝐻0) ≅
1

2𝑛(1 − 𝑒−𝜙𝑇)
 .                                            (11) 

 

For the proposed test, we have 𝑉 = ∑ 𝑈𝑖𝑗𝑖,𝑗 , as defined earlier, thus: 

 

𝐸(𝑉) = 𝑛2 {Pr(𝑀𝑎𝑥(𝑋𝑖1
, 𝑋𝑖2

) > 𝑀𝑎𝑥(𝑌𝑗1
, 𝑌𝑗2

) ) + Pr (𝑀𝑎𝑥(𝑋𝑖1

′ , 𝑋𝑖2
) ≥ 𝑀𝑎𝑥(𝑌𝑗1

, 𝑌𝑗2
)) 

−Pr(𝑀𝑎𝑥(𝑋𝑖1
, 𝑋𝑖2

) < 𝑀𝑎𝑥(𝑌𝑗1
, 𝑌𝑗2

) ) − Pr (𝑀𝑎𝑥(𝑋𝑖1
, 𝑋𝑖2

) ≤ 𝑀𝑎𝑥(𝑌𝑗1

′ , 𝑌𝑗2
))}  (12) 

 

where random variables 𝑋 and 𝑋′ denote the time to 

failure and time to censoring of the patients who are 

receiving treatment 𝐴, and determined by the probability 

density function 𝑓1(𝑥). Similarly, random variables 𝑌 and 𝑌′ 

denote the time to failure and time to censoring of the 

patients who are receiving treatment

𝐵, and determined by probability density function 𝑓2(𝑦). 

Herein,  𝑋′ ≡ 𝑌′ ≡ 𝑇 and according to the assumed lifetime 

distribution, for a patient receiving treatment 𝐴 and 𝐵, the 

probability of being censored at 𝑇 is 𝑒−𝑇𝜙  and 𝑒−𝑇𝜃𝜙 

respectively. We now obtain these probabilities as follows: 

 

Pr(𝑀𝑎𝑥(𝑋𝑖1
, 𝑋𝑖2

) > 𝑀𝑎𝑥(𝑌𝑗1
, 𝑌𝑗2

) ) + Pr (𝑀𝑎𝑥(𝑋𝑖1

′ , 𝑋𝑖2
) ≥ 𝑀𝑎𝑥(𝑌𝑗1

, 𝑌𝑗2
)) 
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= 2𝜃𝜙 ∫ (1 − (1 − 𝑒−𝜙𝑢)
2

)
𝑇

0

(1 − 𝑒−𝜃𝜙𝑢)𝑒−𝜃𝜙𝑢𝑑𝑢 

 

 = 𝜃 {
4

(1 + 𝜃)
(1 − 𝑒−(1+𝜃)𝜙𝑇) −

4

(1 + 2𝜃)
(1 − 𝑒−(1+2𝜃)𝜙𝑇) −

2

(2 + 𝜃)
(1 − 𝑒−(2+𝜃)𝜙𝑇)

−
1

(1 + 𝜃)
(1 − 𝑒−2(1+𝜃)𝜙𝑇)} ,                                                                     (13) 

 

and 

 

Pr(𝑀𝑎𝑥(𝑋𝑖1
, 𝑋𝑖2

) < 𝑀𝑎𝑥(𝑌𝑗1
, 𝑌𝑗2

) ) + Pr (𝑀𝑎𝑥(𝑋𝑖1
, 𝑋𝑖2

) ≤ 𝑀𝑎𝑥(𝑌𝑗1

′ , 𝑌𝑗2
)) 

 

= 2𝜃𝜙 ∫ (1 − 𝑒−𝜙𝑢)
2

𝑇

0

(1 − 𝑒−𝜃𝜙𝑢)𝑒−𝜃𝜙𝑢𝑑𝑢 

 

= 𝜃 {
2

𝜃
(1 − 𝑒−𝜃𝜙𝑇) −

1

𝜃
(1 − 𝑒−2𝜃𝜙𝑇) +

2

(2 + 𝜃)
(1 − 𝑒−(2+𝜃)𝜙𝑇) −

1

(1 + 𝜃)
(1 − 𝑒−2(1+𝜃)𝜙𝑇) 

−
4

(1 + 𝜃)
(1 − 𝑒−(1+𝜃)𝜙𝑇) +

4

(1 + 2𝜃)
(1 − 𝑒−(1+2𝜃)𝜙𝑇)}.                          (14) 

 

Substituting eqs. (13) and (14) in eq. (12), we arrive at 

 

𝐸(𝑛−2𝑉) =  𝜃 {
8

(1 + 𝜃)
(1 − 𝑒−(1+𝜃)𝜙𝑇) −

8

(1 + 2𝜃)
(1 − 𝑒−(1+2𝜃)𝜙𝑇) −

1

𝜃
(1 − 𝑒−2𝜃𝜙𝑇) 

−
4

(2 + 𝜃)
(1 − 𝑒−(2+𝜃)𝜙𝑇) +

2

(1 + 𝜃)
(1 − 𝑒−2(1+𝜃)𝜙𝑇) −

2

𝜃
(1 − 𝑒−𝜃𝜙𝑇)}. 

 

Thus, 

 

𝜕𝐸(𝑛−2𝑉)

𝜕𝜃
|

𝜃=1

= {
8

9
− 2𝜙𝑇𝑒−𝜙𝑇 + 6𝜙𝑇𝑒−2𝜙𝑇 −

8

9
𝑒−3𝜙𝑇 −

20

3
𝜙𝑇𝑒−3𝜙𝑇 +

4

3
𝜙𝑇𝑒−4𝜙𝑇}.   (15) 

 
Now, 

𝑣𝑎𝑟(𝑛−2𝑉|𝐻0) = 𝑛−4𝐸 {(∑ ∑ 𝑈𝑖𝑗

𝑛2

𝑗=1

𝑛1

𝑖=1

− 𝐸 (∑ ∑ 𝑈𝑖𝑗

𝑛2

𝑗=1

𝑛1

𝑖=1

)| 𝐻0)}

2

 

 

⟹              𝑣𝑎𝑟(𝑛−2𝑉|𝐻0) = 𝑛−4𝐸 {(∑ ∑ 𝑈𝑖𝑗

𝑛2

𝑗=1

𝑛1

𝑖=1

| 𝐻0)}

2

.                                             (16) 

 

Since, 𝐸(∑ ∑ 𝑈𝑖𝑗
𝑛2
𝑗=1

𝑛1
𝑖=1 ) = 0 and 𝐸(∑ ∑ 𝑈𝑖𝑗𝑈𝑖′𝑗

𝑛2
𝑗

𝑛1

𝑖≠𝑖′=1 ) = 𝐸 (∑ ∑ 𝑈𝑖𝑗𝑈𝑖𝑗′
𝑛2

𝑗≠𝑗′=1
𝑛1
𝑖=1 ). Also, 𝐸 (∑ ∑ 𝑈𝑖𝑗𝑈𝑖′𝑗′

𝑛2

𝑗≠𝑗′=1
𝑛1

𝑖≠𝑖′=1 ) = 0, since 

𝑈𝑖𝑗 𝑎𝑛𝑑 𝑈𝑖′𝑗′ are independent of each other and have expectation zero. Further evaluating each term of eq. (16), we get 

 

                   𝑣𝑎𝑟(𝑛−2𝑉|𝐻0) = 𝑛−1 {
2

3
(1 − 𝑒−𝜙𝑇)

3
+ 2𝑒−𝜙𝑇(1 − 𝑒−𝜙𝑇)}.                       (17) 

 

Substituting eqs. (10), (11), (15) and (17) in eq. (9), we get the 𝐴𝑅𝐸 of 𝑉 to 𝐹 as, 

 

𝐴𝑅𝐸𝑉𝐹 =
(

8
9

− 2𝜙𝑇𝑒−𝜙𝑇 + 6𝜙𝑇𝑒−2𝜙𝑇 −
8
9

𝑒−3𝜙𝑇 −
20
3

𝜙𝑇𝑒−3𝜙𝑇 +
4
3

𝜙𝑇𝑒−4𝜙𝑇)
2

1
3

(1 − 𝑒−𝜙𝑇)4 + 𝑒−𝜙𝑇(1 − 𝑒−𝜙𝑇)2
.     (18) 

Similarly, we can determine the ARE of the proposed 𝑉 test to 𝐺 (Gehan’s test) as, 

 

𝐴𝑅𝐸𝑉𝐺 =
(

8
9

− 2𝜙𝑇𝑒−𝜙𝑇 + 6𝜙𝑇𝑒−2𝜙𝑇 −
8
9

𝑒−3𝜙𝑇 −
20
3

𝜙𝑇𝑒−3𝜙𝑇 +
4
3

𝜙𝑇𝑒−4𝜙𝑇)
2

(
4
3

(1 − 𝑒−𝜙𝑇) + 4𝑒−𝜙𝑇)

(1 − 𝑒−2𝜙𝑇)2 (
1
3

(1 − 𝑒−𝜙𝑇)2 + 𝑒−𝜙𝑇)
,          (19) 
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where    

𝜙𝑇 =
𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑢𝑑𝑦 𝑡𝑖𝑚𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐴
 . 

 

Using eqs. (18) and (19), the 𝐴𝑅𝐸𝑠 of the proposed test 𝑉 with respect to (w.r.t.) 𝐹 test and Gehan’s test 𝐺 for various values of 𝜙𝑇 are shown 

in Table 4. 

 

Table 4. 𝐴𝑅𝐸 of the 𝑉 test w.r.t. 𝐹 and 𝐺 (Gehan) tests for 

various values of 𝜙𝑇 

𝝓𝑻 → 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 → ∞ 

𝑨𝑹𝑬𝑽𝑭 
1.77

8 

1.87

9 

0.98

8 

1.26

2 

1.72

0 

2.04

5 

2.37

0 

𝑨𝑹𝑬𝑽𝑮 
1.77

8 

2.01

3 

1.17

9 

1.60

7 

2.25

3 

2.70

9 

3.16

0 

 

 When the value of 𝜙𝑇 is greater than two, the 𝐴𝑅𝐸 

for our test with respect to both 𝐹 test and Gehan’s test 

increases with 𝜙𝑇. The value of 𝐴𝑅𝐸 with respect to Gehan’s 

test is always greater than 1, i.e., our test performs better 

than Gehan’s test for all 𝜙𝑇 considered here. Moreover, the 

proposed test performs better than 𝐹 test for all considered 

values, except at 𝜙𝑇 = 2. 

 
6. Real-Life Example 

 

 We worked on a real-life example derived from 

Stablein & Koutrouvelis (1985), which is based on a trial of 

patients who suffered from locally unrestricted gastric 

cancer and were treated with chemotherapy and 

chemotherapy with radiotherapy. This data offers the 

survival time (in days) for the 45 patients on each treatment. 

 To check the distribution of data, we applied a 

Kolmogorov-Smirnov test and found that this data set 

follows Exponential distribution. Our aim is to determine if 

there is a significant difference in the survival times of the 

patients treated with chemotherapy and chemotherapy with 

radiotherapy. The critical value of the proposed test statistic 

for sample size (45, 45) in the case of Exponential 

distribution is found to be = 4.9453 using the procedure 

described in Section 4. The standardized test statistic (𝑧) for 

this data is = 8.4554. Since the calculated test statistic value 

turns out to be greater than its critical value, the null 

hypothesis of no significant difference is rejected. It is 

concluded that there is a significant difference in the survival 

time of the patients treated with chemotherapy and 

chemotherapy with radiotherapy. 

 

7. Power Comparison of The Proposed 
Test 

 

The statistical power of a test is defined as the probability 

that the test rejects the null hypothesis when it is true. Using 

the critical values shown in Section 4, the statistical power of 

the proposed test and Gehan’s test was computed through 

a Monte-Carlo simulation. Data were simulated from three 

lifetime distributions viz., Lindley, Exponential and Weibull 

10,000 times, with a scale parameter of the second sample 

as 𝜃 = 2, 3, and 4. The statistical power of the proposed test 

𝑉 and Gehan’s test 𝐺 is shown in the Tables 5-7 with same 

sample sizes and censoring percentages that we have 

considered for computing the critical points. 

Table 5. Statistical power of the 𝑉 and 𝐺 tests, when the 

time to failure distribution is Lindley and time to censoring 

distribution is Exponential 

 

 

 

𝑛 

 Test  

 

𝜃 

𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 

𝑝𝑐𝑒𝑛𝑠 

0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 

10 
2 
3 
4 

0.395 
0.611 
0.693 

0.298 
0.569 
0.717 

0.255 
0.404 
0.474 

0.290 
0.483 
0.639 

0.203 
0.301 
0.372 

0.254 
0.441 
0.549 

0.141 
0.204 
0.263 

0.207 
0.362 
0.509 

15 
2 
3 
4 

0.414 
0.698 
0.767 

0.379 
0.642 
0.849 

0.396 
0.595 
0.730 

0.375 
0.620 
0.782 

0.360 
0.494 
0.603 

0.314 
0.588 
0.738 

0.235 
0.382 
0.424 

0.277 
0.526 
0.632 

20 
2 
3 
4 

0.570 
0.843 
0.926 

0.442 
0.772 
0.911 

0.498 
0.771 
0.879 

0.434 
0.745 
0.878 

0.406 
0.671 
0.750 

0.404 
0.698 
0.818 

0.307 
0.451 
0.571 

0.374 
0.622 
0.793 

25 
2 
3 
4 

0.681 
0.935 
0.980 

0.511 
0.832 
0.934 

0.638 
0.909 
0.963 

0.509 
0.822 
0.928 

0.493 
0.776 
0.875 

0.501 
0.812 
0.934 

0.374 
0.599 
0.665 

0.424 
0.736 
0.857 

30 
2 
3 
4 

0.807 
0.982 
0.995 

0.579 
0.888 
0.970 

0.727 
0.965 
0.988 

0.559 
0.863 
0.952 

0.605 
0.878 
0.944 

0.555 
0.844 
0.934 

0.405 
0.651 
0.792 

0.504 
0.794 
0.916 
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Table 6. Statistical power of the 𝑉 and 𝐺 tests, when both time to failure and time to censoring distributions are Exponential 

 
 

𝑛 

 Test 
 

𝜃 

𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 

𝑝𝑐𝑒𝑛𝑠 

0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 

10 
2 
3 
4 

0.203 
0.313 
0.409 

0.214 
0.372 
0.554 

0.180 
0.281 
0.350 

0.179 
0.341 
0.471 

0.143 
0.211 
0.283 

0.158 
0.290 
0.434 

0.129 
0.190 
0.227 

0.156 
0.263 
0.397 

15 
2 
3 
4 

0.302 
0.503 
0.630 

0.235 
0.472 
0.615 

0.255 
0.450 
0.581 

0.218 
0.431 
0.575 

0.202 
0.391 
0.461 

0.211 
0.425 
0.554 

0.163 
0.215 
0.333 

0.208 
0.379 
0.490 

20 
2 
3 
4 

0.381 
0.716 
0.830 

0.304 
0.575 
0.764 

0.338 
0.603 
0.777 

0.279 
0.498 
0.697 

0.274 
0.493 
0.634 

0.286 
0.489 
0.654 

0.214 
0.346 
0.416 

0.224 
0.465 
0.599 

25 
2 
3 
4 

0.501 
0.825 
0.921 

0.357 
0.641 
0.826 

0.453 
0.740 
0.883 

0.329 
0.637 
0.806 

0.336 
0.643 
0.766 

0.285 
0.592 
0.757 

0.229 
0.426 
0.552 

0.272 
0.530 
0.678 

30 
2 
3 
4 

0.613 
0.904 
0.981 

0.388 
0.749 
0.878 

0.509 
0.834 
0.952 

0.372 
0.672 
0.835 

0.434 
0.709 
0.835 

0.367 
0.648 
0.827 

0.274 
0.496 
0.646 

0.316 
0.620 
0.752 

 

Table 7. Statistical power of the 𝑉 and 𝐺 tests, when the time to failure distribution is Weibull and time to censoring distribution is Exponential 

 
 

𝑛 

 Test  
 

𝜃 

𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 𝑉 𝐺 

𝑝𝑐𝑒𝑛𝑠 

0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 

10 
2 
3 
4 

0.325 
0.477 
0.538 

0.360 
0.613 
0.798 

0.278 
0.421 
0.499 

0.295 
0.576 
0.681 

0.238 
0.371 
0.427 

0.251 
0.484 
0.617 

0.168 
0.263 
0.319 

0.233 
0.416 
0.550 

15 
2 
3 
4 

0.478 
0.723 
0.807 

0.455 
0.769 
0.916 

0.436 
0.685 
0.769 

0.428 
0.725 
0.879 

0.393 
0.582 
0.674 

0.363 
0.665 
0.808 

0.267 
0.439 
0.506 

0.330 
0.567 
0.734 

20 
2 
3 
4 

0.645 
0.897 
0.957 

0.514 
0.859 
0.954 

0.599 
0.862 
0.929 

0.506 
0.836 

0.920 

0.499 
0.752 
0.839 

0.498 
0.801 
0.906 

0.351 
0.572 
0.665 

0.430 
0.723 
0.849 

25 
2 
3 
4 

0.786 
0.975 
0.995 

0.625 
0.917 
0.977 

0.717 
0.942 
0.979 

0.614 
0.910 
0.972 

0.612 
0.875 
0.953 

0.598 
0.869 
0.945 

0.447 
0.707 
0.801 

0.532 
0.816 
0.921 

30 
2 
3 
4 

0.864 
0.992 
0.999 

0.701 
0.942 
0.986 

0.816 
0.980 
0.995 

0.695 
0.938 
0.983 

0.699 
0.932 
0.971 

0.667 
0.910 
0.970 

0.537 
0.803 
0.882 

0.601 
0.873 
0.955 

 

According to the Tables 5-7, we observe the following about the 

statistical power of the tests: 

 

a. The power of both tests increases with an increase in the 

sample size (𝑛) and scale parameter (𝜃). However, the 

power decreases with an increase in the censoring 

percentage (𝑝𝑐𝑒𝑛𝑠).  

b. In the case of Lindley and Weibull distribution, from Tables 

5 and 7, we observe that for the smaller censoring 

percentage, the proposed test performs better than Gehan’s 

test for all scale parameters considered here when the 

sample size is ≥ 20. 

c. In the case of Exponential distribution, from Table 6, we 

observe that for the smaller censoring percentage, the 

proposed test performs better than Gehan’s test for all scale 

parameters considered here when the sample size is ≥ 15. 
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