
 
 

1 
 
 

Regular Issue 

Malaysian Journal of Science 44 (1): 1-8 (March 2025) 

 

https://mjs.um.edu.my  

 

DOI: https//doi.org/10.22452/mjs.vol44no1.1 
Malaysian Journal of Science 43(4): 1-8 (March 2025) 

Lignin and Cellulose Nanofibers from Bambusa vulgaris Schrad (Bamboo): An Extraction, 
Preparation and Characterization Study 
Tawakaltu AbdulRasheed-Adeleke1a, Evans Chidi Egwim2a, Stephen Shaibu Ochigbo3b, Adefowope Saheed Alabi4c, Christopher 
Chintua Enweremadu5d and Joshua Olusegun Okeniyi6de* 
 

 

Abstract: In this paper, lignin and cellulose nanofibers were extracted and prepared from Bambusa vulgaris schrad (B. vulgaris: bamboo) 
before being subjected to characterization investigations. These extractions and preparations of the lignin and cellulose nanofibers were 
carried out chemically using alkali combined with bleaching treatments together with acid hydrolysis and sonication. The cellulose 
nanofibers were then subjected to morphological and dimensional characterization of the Zetasizer, Scanning Electron Microscopy (SEM) 
and Transmission Electron Microscopy (TEM) instruments. The functional groups investigation, using Fourier Transform infrared 
spectroscopy (FTIR), and thermal degradation via the Thermogravimetric analysis (TGA), of the bamboo lignin and of the cellulose 
nanofibers were also carried out. Results revealed that the percentage yields of the bamboo lignin and bamboo nanofiber were 21.91 
wt% and 33.6 wt% respectively. The SEM and TEM investigations indicated the prepared nanofibers were rod-like in morphology, having 
sizes ranging from 20 to 100 nm. FTIR showed that the lignin extracted from bamboo typified G-S type lignin while the nanofibers are 
completely devoid of lignin. TGA revealed that the lignin was more thermally stable than the nanofiber under the test conditions. The 
obtained lignin and cellulose nanofibers showed promise for possible application as reinforcement agents in biodegradable 
nanocomposite film preparation. 
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1. Introduction 
Cellulose and lignin are natural organic polymers found mainly 

in plants. Cellulose is the most widely available biopolymer having 
straight chain of D-glucose units, which are linked together via the 
bonds of β(1 → 4)-glycosides (Vazquez et al., 2013). It is a 
fundamental structural constituent of plants’ primary cell wall, 
and of some species of algae, as well as of the oomycetes. It is also 
known that some species of bacteria also secrete cellulose for the 
formation of biofilms (Brethauer et al., 2020; Beloin et al., 2008). 
In contrast, lignin is a polymeric natural product resulting from 
trans-coniferyl alcohol, trans-sinapyl alcohol and trans p-
coumaryl alcohol polymerization (Harman-Ware et al., 2017). 
Lignin is a complicated compound that is generally obtained from 
wood, while it is also a plants’ secondary cell walls fundamental 

component, and that is also present in some algae (Börcsök et al., 
2020; Labeeuw et al., 2015; Lebo, et al., 2015; Martone, et al., 
2009). Since lignin and hemicellulose are covalently linked, lignin 
crosslinks diverse polysaccharides of plants, and by this, gives 
mechanical strength to the plant’s cell wall, which extend as 
structural strength to the whole plant actually (Jawerth et al., 
2020; Salmén et al., 2016; Gibson 2012; Chabannes et al., 2001). 

Cellulose and lignin have been extracted from many plants using 
several methods that have been reported by many authors (Dinh 
Vu et al., 2017; Radotić & Mićić 2016; Yong et al., 2012; Kaushik 
et al., 2010; Alemdar & Sain, 2008). These extractions, of both 
cellulose and lignin, have been put into many applications, several 
of which have also been detailed in the literature (Gopakumar et 
al., 2018; Atanda, 2015; Zakikhani et al., 2014; Bao et al., 2011). 
For instance, fibers obtained from these extractions can be in 
micro or nano form. Currently, the nano form is favored owing to 
the exceptional effect such as the outstanding mechanical 
properties that could be obtained from only a little content of the 
nanofiller. A variety of methods have also been employed for 
preparing and extracting nanofibers of high purity from cellulosic 
materials (Shahi et al., 2020; Phanthong et al., 2018; Menon et al., 
2017; Xiao et al., 2015; Lu et al., 2013; Saito et al., 2009; Paakko 
et al., 2007; Elazzouzi-Hafraoui et al., 2008; Alemdar & Sain 2008). 

Bambusa vulgaris schrad (B. vulgaris: bamboo) is a naturally 
occurring biomass, which grows plentifully in most of the sub-
tropical countries. Also, that B. vulgaris contains cellulose fibers 
imbedded in a lignin matrix makes it to be regarded as a 
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composite material. This composite material exhibits many 
advantages, which among others includes strength, durability, 
light weight, stiffness, and biodegradability, and by these, B. 
vulgaris has found applications, from time memorial, in many 
sectors (Rahim et al., 2018; Atanda, 2015; Zakikhani et al., 2014; 
Atanda, 2015; Bao et al., 2011). Although B. vulgaris (bamboo) is 
readily available in Nigeria, it is highly underutilized (Atanda, 
2015), and it has not been extensively studied as a source of 
nanofibers (Saniwan, et al., 2012; John et al., 2007; Chakraborty 
et al., 2006). Hence, the focus of this study is on the application of 
bamboo for preparing and characterizing nanofibers and lignin. 
 
2. Materials and Methods 

Materials 
Sample materials and chemicals 
Collections of the stems of B. vulgaris (bamboo) were from the 

banks of River Gurara at Izom, Niger State, Nigeria. These B. 
vulgaris stems were identified and authenticated at the 
herbarium of National Institute for Pharmaceutical Research and 
Development (NIPRD), Idu, Abuja, Nigeria, where a voucher of No 
NIPRD/H/6793 had been dropped for future reference. Purchased 
from reputable chemical stores for the study include analytical 
grades of C2H5COH, H2SO4 and H2O2 (from BDH Chemicals®, 
England), NaOH (from Kermel®, China), and HCl (from Griffin and 
George®, England). 

 
Equipment 
The equipment employed in this study are: Oven (Gallenkamp® 

Size 2, 11526E), Autoclave (Patterson Scientific®, Prestige 2100), 
Digital Weighing Balance (Ohaus Cooperation®, China, Scout Pro 
SPU601), pH meter (Hanna®, pH 212), Thermogravimetric 
analyzer (Perkin Elmer® STA 6000), Transmission Electron 
Microscope (Zeiss Auriga® HRTEM), Scanning Electron 
Microscope (Zeiss Auriga® HRSEM), Fourier Transform Infrared 
(Perkin Elmer®, UK, Frontier FT-IR), Ultra Sonicator (Scientz®, 
China, SB25-12DT), Zetasizer (Malven®, USA,  Nano-S series). 

 
B. vulgaris Fiber and Lignin Preparation 
The extraction of lignin from B. vulgaris followed the method 

that had been detailed in the research works reported by Yong et 
al. (2012), Kaushik et al. (2010) and Alemdar & Sain (2008). By 
these, stalks of B. vulgaris were sun-dried before being chopped 
to smaller pieces. This was followed by grinding the chopped 
pieces and subsequent screening to a mesh fraction of 40–60 µm. 
From this ground stalk of B. vulgaris, 20 g was soaked in 4% w/w 
NaOH, for 24 h at room temperature, after which it was filtered 
and washed with distilled water until the complete elimination of 
the alkali. Further filtration was carried out for the second time 
before treatment with 10% w/w NaOH for 4 h in an autoclave 
maintained at 121 °C. Rewashing of the material with distilled 
water and subsequent filtration then followed.  The filtrate was 
then acidified with H2SO4 to pH = 2 for the precipitation of lignin. 
The precipitated lignin were then filtered out of the mixture, 
separated and was then washed severally with water before being 
dried in an oven set at 40 °C. The supernatant ensuing from the 

alkali treatment was bleached, at room temperature, in 8 % v/v 
H2O2 for 24 h to obtain B. vulgaris fiber, which was washed and 
filtered over and over again, just like before, for obtaining the 
fiber material from the plant, for further use. 

 
Preparation of Nanofiber from B. vulgaris Fiber 
Preparation of nanofiber from B. vulgaris fibers was done 

through acid hydrolysis usage (Saniwan et al., 2012 Kaushik et al., 
2010). The B. vulgaris fibers were steeped in 10 %w/w HCl with 
applied ultrasonic agitation, by an ultrasonicator (SB25-12DT, 
Scientz®, China), for 2 h and at 60 °C. Final washing of the sample 
material then followed, before the homogenization of the same 
for 15 min in a Heidolph® DIAX 900 (USA) high shear homogenizer 
instrument for obtaining B. vulgaris nanofibers. 

 
B. vulgaris Nanofiber and B. vulgaris Lignin Characterizations 
Percentage yield analyses 
The determinations of B. vulgaris nanofiber and B. vulgaris lignin 

yields were obtained from the dry weight of the sample material 
that was isolated based on the initial dry weight of grinded B. 
vulgaris. 

 
Nanofiber Particle Size Analyses 
Investigation of B. vulgaris nanofiber particle sizes in solution 

employed use of dynamic light scattering (DLS) by the Zetasizer 
Nano-S series instrument from Malven®, USA, at 173° angle of 
light scattering, 25°C operating temperature, and 120 sec 
equilibrating time. For carrying out the particle size analysis, 1 mg 
of the sample material was dispersed in 10 ml C2H5OH before 
being transferred, using a syringe having 0.22 μm filter coupled to 
it, into a polystyrene cuvette. This was then placed into in the 
analysis stage of the Zetasizer equipment for analyzing the B. 
vulgaris nanofiber particle sizes. 

 
Spectra Analyses 
Spectra analyses of the B. vulgaris nanofiber and B. vulgaris 

lignin were carried out using the Frontier FT-IR, Perkin Elma® (UK) 
machine, by KBr disc, with spectra range between 4000 and 400 
cm-1. This was used for assessing the changes in the chemical 
structure of the polymer, which could have taken place due to 
modification. 

 
Thermal Behavior Analyses 
The B. vulgaris nanofiber and B. vulgaris lignin thermal 

behaviors were studied using the STA 6000 model of 
Thermogravimetric analyzer (from Perkin Elmer®). 

 
Morphological Analyses 
Morphological investigations of the B. vulgaris nanofiber were 

done via use of the HRSEM model of Scanning Electron 
Microscopy (SEM) instrument (from Zeiss Auriga®) at a voltage of 
15 kV. The samples for the SEM analyses were mounted on the 
stub having two-sided adhesive tape having a thin layer of gold 
for its coating (Okeniyi et al., 2018; Okeniyi et al., 2017a; Okeniyi 
et al., 2017b), for the non-conducting B. vulgaris nanofibers being 

https://www.sciencedirect.com/topics/engineering/composite-materials
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investigated. A 350 times the original size were then used as the 
magnification for taking the images by the SEM equipment, as 
detailed in Kampeerapappun et al. (2007). 

 
Transmission Electron Microscopy (TEM) 
High resolution Transmission electron microscopy (HRTEM) 

measurements employed the use of the Zeiss Auriga® HRTEM 
instrument at 100kV. Samples of B. vulgaris nanofiber were 
diluted in distilled water at the ratio of 1 part B. vulgaris nanofiber 
to 20 parts distilled water. Copper grids, at 300-mesh grid sizes, 
were then dipped in the diluted B. vulgaris nanofiber solutions 
before the grids are dried at ambient temperature. The TEM 
images of the B. vulgaris nanofiber samples were then taken with 
the microscope. For these, high magnifications at 30,000 and 
85,000 times the original sample size were then employed for 
taking images of the B. vulgaris nanofiber samples (Ochigbo et al., 
2012; Kampeerapappun et al., 2007). 
 
4. Discussion 

Percentage Yields of B. vulgaris Nanofiber and Lignin 
The images of B. vulgaris nanofiber and B. vulgaris lignin are 

presented in Figure 1. The respective percentage yields of these 
materials are 33.6% and 21.91%, respectively.  

 

Figure 1. Post-processing images of (a) B. vulgaris lignin, and (b) 
B. vulgaris nanofiber. 

 
B. vulgaris Nanofiber Size Distribution 
The particle size distribution, of the B. vulgaris nanofiber sample 

studied, is presented in Figure 2.  

 
Figure 2. B. vulgaris nanofiber particle size distribution. 

 
From Figure 2, the particle size distribution showed that B. 

vulgaris nanofiber had two granulometric distributions with the 
peak of the first at 30 nm, while the peak of the second is at 70 
nm. Also, it could be observed that range of the prepared 
nanofiber sizes is from 20 nm to 100 nm, which indicates the 
fibers prepared in the present study are in the nano-sized scale. 

By this, therefore, the fibers could be suitable for use as fillers in 
the production of nanocomposite films. 

 
Micrographs of the Prepared B. vulgaris Nanofiber 
The micrographs, obtained from the SEM and TEM instruments, 

of the prepared B. vulgaris nanofiber, are shown in Figure 3. From 
Figure 3a, the SEM depicted the prepared B. vulgaris nanofibers 
as rod-like, whereas the micrograph from the TEM instrument, 
Figure 3b, indicated the prepared nanofibers ranged from 20 nm 
to 100 nm in size. These results from the TEM equipment confirm 
the B. vulgaris particle size distribution from Figure 2 that had 
been obtained using another instrument, i.e. the Zetasizer Nano-
S series. From Figure 3b, it could also be deduced that the 
amorphous regions of the nanofiber were transversely cleaved by 
exposure to hydrochloric acid hydrolysis, thereby reducing the 
fibers sizes from microns to nanometers (Yong et al., 2012; Azazi-
Samir et al., 2005). The result obtained herein exhibited 
agreement that from Liu et al. (2010), from which the size ranging 
between 50 nm and 100 nm cellulose nanocrystals were produced 
from the treatment of strands from bamboo by HNO3-KClO3 that 
was followed by acid hydrolysis. In another related study, 
Krishnan & Ramesh (2013) also reported particle width range 
from 30 nm to 90 nm for nanofibers obtained from coconut coir 
fibers, which is just as Zhang et al. (2007) obtained spherically 
shaped cellulose nanoparticle materials. The difference in shape 
of the various nanofibers obtained could be ascribed to the type 
of treatment used. By the morphological results in the present 
case, the B. vulgaris nanofibers, so prepared, are found 
appropriate as fillers in the productions of starch nanocomposite 
films.  

 

 
Figure 3. Micrographs of the prepared B. vulgaris nanofiber (a) 

SEM (b) TEM. 
 
FTIR Spectra of B. vulgaris Lignin and B. vulgaris Nanofiber 
The FTIR spectra from the B. vulgaris lignin and the B. vulgaris 

nanofiber are presented in Figure 4. The functional groups 
distribution proposed for assignments at adsorbed frequencies 
resulting from the FTIR spectra are presented in Table 1 (Okeniyi 
et al., 2019; Okeniyi & Popoola, 2017; Okeniyi et al., 2017c; 
Okeniyi et al., 2016; Coates, 2000).  

 



 

4 
 

Regular Issue Malaysian Journal of Science 

DOI: https//doi.org/10.22452/mjs.vol44no1.1 
Malaysian Journal of Science 43(4): 1-8 (March 2025) 

 
Figure 4. FTIR Spectra of (a) B. vulgaris lignin and (b) B. vulgaris 

nanofiber. 
 

Table 1.  Assignments of FTIR Spectra Frequencies from B. 
vulgaris lignin and B. vulgaris nanofiber. 

B. vulgaris 
Lignin 
Frequency 
(cm-1) 

B. vulgaris 
Nanofiber  
Frequency  
(cm-1) 

Chemical Groups Assignment 

3364 3335 aliphatic and aromatic O–H stretch 
2922, 
2167 

2899 saturated aliphatic C–H stretch 

1648 1639 carbonyl stretch (conjugated 
ketone) 

1597, 
1506, 
1461 

- Aromatic C=C–C rings stretching 
and bending vibrations 

1422 1428 C–H in-plane bend deformation 

- 1368 O–H bend induced by groups of 
phenol  

1328 1316 C–O breathing of Syringyl ring 

1242 - C–O breathing of Guaiacyl ring  

1159 1160, 1105 C–O stretch vibration of 
alkyl/cyclic ethers  

896, 834 897 C–H ring deformation from di-
substituted aryl groups 

- 709, 666 O–H out-of-plane bending 
vibration 

From the presented results in Table 1, the following 
characteristic absorption bands derived from the FTIR spectrum 
of B. vulgaris lignin include the absorption band at 3364 cm-1 that 
is attributed to the stretching vibration of O–H in aliphatic OH and 
aromatic groups, while the bands in the proximities of 2922 cm-1 
and of 2167 cm-1 respectively corresponds to saturated aliphatic 
CH2’s asymmetrical and symmetrical stretching bands. The 1648 
cm-1 absorption band is allocated to the stretching of conjugated 

carbonyl groups. Absorption bands at 1422 cm-1, 1506 cm-1 and 

1597 cm-1 are attributed to the skeleton vibration of aromatic 
groups in the B. vulgaris lignin. The 1461 cm-1 absorption 
frequency illustrates aromatic ring vibration and C–H 
deformations, while the adsorption at 1242 cm-1 frequency 
follows from guaiacyl (G) ring breathing with C–O. 

 
In the B. vulgaris nanofiber, the 1368 cm-1 absorption frequency 

corresponds to O–H groups of free phenolic compounds. The 
absorptions at 1316 cm-1 from the B. vulgaris nanofiber spectra 
and at 1328 cm-1 by the B. vulgaris lignin spectra indicate syringyl 
(S) ring breathing with C-O. The adsorbed frequencies at 896 cm-

1 and 1159 cm-1 are respectively attributed to C–O deformation 
and ether stretching. Finally, the adsorption at 834 cm-1 
corresponds to ring vibrations and C–H deformation. 

 
The distributions of functional groups for B. vulgaris lignin, in 

this study, conform to the result reported in literature for Kraft 
and Klason lignin extracted from pine and wood (Faix, 1991; 
Zheng-Jun et al., 2012b; Ghatak, 2008; Li, 2011; Ibrahim et al., 
2006). In more specific terms, in the system of lignin infrared 
spectra classified by Faix (1991), the extracted B. vulgaris lignin 
was typically of the G-S type of lignin owing to the consideration 
that the absorption at 1463 cm−1 is of a lower intensity than the 
band at 1508 cm−1, in that study. Also, the peak of absorption 
frequency obtained in that study at 1248 cm−1 is of a stronger 
intensity than the peak that was obtained at 1325 cm−1, by Faix 
(1991). 

 
The spectrum of FTIR obtained from B. vulgaris nanofiber 

compares well with that of B. vulgaris lignin, with the contrast 
that the absorption bands at 1506 cm-1 and 1597 cm-1, which 
correspond to aryl ring of C=C–C stretching from the lignin, are 
absent. The non-availability of these peaks in B. vulgaris nanofiber 
is attributed to lignin elimination as a result of further acid 
hydrolysis in B. vulgaris nanofiber preparation process. Also, the 
peak at 1242 cm-1 is also absent in the B. vulgaris nanofiber, which 
illustrates the effective elimination of hemicelluloses, lignin and 
pectin in the process of the B. vulgaris nanofiber preparation. 

 
Thermal Behaviors of B. vulgaris Lignin and B. vulgaris 
Nanofiber 
Presented in Figure 5 are the thermal behaviors of B. vulgaris 

lignin and B. vulgaris nanofiber, while the essential parameters of 
degradation data from the thermal characterizations are plotted 
in Figure 6. 
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(a) 

 

 
(b) 

Figure 5. TGA thermograms: (a) B. vulgaris lignin; (b) B. vulgaris 
nanofiber. 

 

 
(a) 

 

 
(b) 

Figure 6. Plots of TGA degradation parameters from B. vulgaris 
lignin and B. vulgaris nanofiber thermal behavior (a) 

Temperature data (b) post TGA residue. 
 

From Figure 5, it could be noted that three degradation stages 
occurred in lignin. The evolution of moisture content of the lignin 
sample was indicated by the initial weight loss that occurred at 
the temperature of about 96 °C. The evolution of products that 
are of low molecular weight such as CO2, CO and CH4 occurred at 
154 °C and this is termed onset degradation (Visakh et al., 2012a; 
LeVan, 1989). The peak degradation and end degradation 
occurred at 295 °C and 488 °C respectively with solid residue of 
about 29.45%. At temperatures above 500 °C, denoting the third 
stage, weight loss was no more obvious due to the condensation 
reactions of aromatic rings that often occur concurrently with 
decomposition reactions, at this stage, (Zheng-Jun et al., 2012; 
Visakh et al., 2012a; LeVan, 1989). These observed thermal 
behaviors by B. vulgaris lignin in the present study exhibit 
similarity with that obtained from reported research works, 
carried out on other biological materials, by other authors 
including Shi et al. (2012), Sumin et al. (2012), and Li (2011). 

 
Alternatively, the TGA plotting of the B. vulgaris nanofiber 

sample occurred in two degradation stages, during the pyrolytic 
degradation process. From this, an onset degradation 
temperature occurred at around 200 °C, which was higher than 
the onset degradation temperature of lignin. In the 2nd 
degradation stage, a sharp decomposition was observed with the 
peak temperature of decomposition and of end degradation 
occurring at 328 °C and 500 °C, respectively. Severe weight loss 
also occurred such that only about 12.2% remained from the 
initial sample of B. vulgaris nanofiber. The lower percentage of 
residue that was observed in the B. vulgaris nanofiber, in 
comparison to that of the B. vulgaris lignin, could be ascribed to 
the non-availability of mineral substances, generally oxides, in the 
B. vulgaris nanofiber. The thermogravimetric degradation 
behavior, detailed in the present work from B. vulgaris nanofiber, 
exhibits similarity to results obtained by Visakh et al. (2012b) and 
LeVan (1989). 

 
Based on the foregoing consideration, it could be inferred that 

B. vulgaris lignin exhibits more thermal stability than the B. 
vulgaris nanofiber, under the condition at which the 
measurements in the study were carried out. This is in spite of the 
fact that the degradation occurring from B. vulgaris lignin began 
at lower temperature than the degradation from the B. vulgaris 
nanofiber. 

 
5. Conclusion 

Lignin and nanofibers were successfully extracted and prepared 
from B. vulgaris (bamboo). The morphology of the prepared B. 
vulgaris nanofibers were revealed, by SEM and TEM analyses, to 
be rod-shaped having sizes that range from 20 to 100 nm. FTIR 
showed that the lignin extracted from B. vulgaris is G-S lignin type 
while the B. vulgaris nanofibers are mostly devoid of lignin. TGA 
showed that the B. vulgaris lignin was more thermally stable than 
that of the B. vulgaris nanofiber under the condition that they 
were measured. 
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