

38

Regular Issue

Malaysian Journal of Science 41 (3): 38-43 (October 2022) https://mjs.um.edu.my

DOI:https//doi.org/10.22452/mjs.vol41no3.5

Malaysian Journal of Science 41(3): 38-43 (October 2022)

A WAITING TIME-BASED BULLY ALGORITHM FOR LEADER NODE SELECTION IN
DISTRIBUTED SYSTEMS
Md. Navid Bin Anwar1a, Afroza Nahar2a*, Nashid Kamal Md.3a, Mehedi Hasan Shuvo4a

Abstract: In distributed systems, a single node (referred to as a leader) coordinates all other nodes to ensure synchronization. If this node

fails, another node in the system must adopt the role of leader. The classic bully algorithm suffers from some significant drawbacks, such

as excessive message passing, a redundant number of election calls, and uncertainties over message delivery. The enhanced bully

algorithm is one of the most recent improvements of this algorithm. However, this algorithm performs poorly in average- and worst-case

scenarios. In this paper, a novel waiting time-based algorithm is proposed to improve the enhanced bully algorithm for electing a new

leader during such critical scenarios. In this algorithm, if a single or multiple number of nodes discover that the leader has failed, it does

not broadcast instantly. Rather, it waits for a certain period, and this waiting time is assigned to the nodes according to their load. After

the timeout, the node sends its message and starts the election process. Moreover, it restricts nodes from unnecessary message passing

and stops any redundant election calls. Accordingly, this algorithm detects the failure of the leader node more precisely and elects a new

leader more quickly.

Keywords: Distributed systems, bully election algorithm, electing coordinator, message passing

1. Introduction

 A distributed system is an accretion of isolated

computers that engage simultaneously through a system to

accomplish a complex task that is coordinated by message

passing (Beaulah et al., 2013; Sathesh, 2015). To arrange the

various errands in a distributed system, a leader is essential

for synchronizing the whole system whenever necessary. To

select the leader (or leader), several algorithms have been

proposed, including distinctive, ring topology, bully election,

Franklin’s, Chang and Robert’s, time slice, and variable

speeds (Amit & Animesh, 2016; Balmukund et al., 2014;

Rahman & Nahar, 2009). However, all these algorithms have

their own shortcomings, including time complexity, message

passing, redundancy, and large network traffic. This paper

presents a reformation of the enhanced version of the bully

algorithm by introducing the time allocation concept to the

nodes. The remainder of the paper is arranged as follows:

Section 2 contains a brief literature review, Section 3

presents a description of the proposed algorithm with

legitimate examples, Section 4 reports the comparative

results and outcomes, and Section 5 indicates the inferences

of the present study.

2. Methodology

In this section, the four major algorithms for electing the

leader node in distributed systems are discussed.

2.1 Bully Algorithm by Garcia-Molina

In 1982, Garcia-Molina first introduced the bully

algorithm (Garcia, 1982), which dynamically chooses a

coordinator (or leader) by utilizing the process identification

(ID) number. This algorithm is based on the following

essential hypotheses:

• It is a synchronous method that utilizes a timeout

instrument to monitor leader disappointment location, and

each process has an exceptional number to allow them to be

recognized.

• Each node acknowledges the node ID among all

other nodes. No node knows which forms are currently up

and which forms are down.

• The node with the highest node ID is chosen as a

leader and is in accord with other active nodes.

• A failed node can rejoin the process after

recuperation.

Whenever the coordinator node is down, an election

process for selecting a new leader starts, and the node with

the highest ID becomes the new leader. All active nodes

receive this message, which entails extensive message
Authors information:
aDepartment of Computer Science, American
International University – Bangladesh (AIUB), Dhaka 1229,
BANGLADESH. E-mail: navid.anwar@aiub.edu1;
afroza@aiub.edu2; nashidkamaljitu7@gmail.com3;
shuvo.rpm@gmail.com4

*Corresponding Author: afroza@aiub.edu

Received: December 4, 2020
Accepted: February 21, 2022
Published: October 31, 2022

https://mjs.um.edu.my/

39

Regular Issue Malaysian Journal of Science

DOI:https//doi.org/10.22452/mjs.vol41no3.5

Malaysian Journal of Science 41(3): 38-43 (October 2022)

passing and creates heavy network traffic (Garcia, 1982;

Mamun et al., 2017).

From Figure 1, the leader election process can be

described as follows:

a) As Node 2 detects that the leader node is down, it

 sends election messages to the higher Nodes 3 and

 4.

b) In response, Nodes 3 and 4 send an OK message.

c) Nodes 3 and 4 send an election message to Node 5.

d) Node 4 sends an OK, although it will not receive any

 message from Node 5.

e) Node 4 will elect itself as leader and broadcast a

 leader message to each node in the network.

This algorithm has the following drawbacks:

• The most significant number of messages during

 the election is O (n2), regardless of how it is

 arranged. Whenever a node sees the leader node is

 down, another election is held. Subsequently,

 multiple elections could happen within this method

 at the same time, forcing substantial system traffic

 that could result in the system being overwhelmed.

• If the leader is running singularly or the connection

 between the process and the coordinator is

 damaged, some processes could fail to identify the

 leader and start an election, resulting in redundant

 elections.

• This algorithm does not guarantee message

 delivery. Consequently, multiple nodes could assign

 themselves as the leader simultaneously.

Figure 1. Leader election in the bully algorithm.

2.2 Modified Bully Algorithm by Quazi Ehsanul Kabir

 Mamun

The basic assumptions of this algorithm are rooted in the

Bully algorithm, whereby the node with the highest ID

number is selected as the leader (Mamun et al., 2017).

However, this algorithm proposes a resolution in cases

where any node (or multiple nodes) detects that the leader

node does not respond.

• If any node identifies that the leader is unavailable

 or has not responded, an election is announced by

 sending a message to the nodes with higher IDs.

• In response, the node with the highest ID transmits

 an OK message and the node elects the node with

 the highest ID node after receiving the responses.

• After being elected, the highest node sends a leader

 message and broadcasts itself as the leader to all

 other existing nodes.

From Figure 2, the election process can be described as

follows:

a) Node 2 detects that leader Node 5 is down.

b) An election message is then sent by Node 2 to the

 highest ID nodes (Nodes 3 and 4).

c) Upon receiving the election message, Nodes 3 and

 4 send an OK message to Node 2.

d) Node 2 elects the highest ID node (i.e., Node 4),

 which then 4 broadcasts itself as the new leader to

 all other existing nodes.

Figure 2. Leader election by Quazi Ehsanul Kabir Mamun

(Mamun et al., 2017)

40

Regular Issue Malaysian Journal of Science

DOI:https//doi.org/10.22452/mjs.vol41no3.5

Malaysian Journal of Science 41(3): 38-43 (October 2022)

Although the modified bully algorithm reduces the total time

of message passing and the complexity compared to the

original bully algorithm, it displays some inadequacies:

• In some cases, the total number of messages

 passing increases because a node can receive more

 than one election message from its lower ID nodes,

 which increases network traffic.

• On recovery, the overall degree of message passing

 is also increased, causing a significant amount of

 network traffic.

2.3 Modified Bully Algorithm by Kordafshari et al.

Kordafshari et al. (2005) introduced a new algorithm in which

the node containing the highest ID acts as the coordinator

node. The author’s also attempted to identify the ensuing

circumstances if any node (or nodes) discovered that the

leader node was down.

• When any node detects that the leader node is not

 responding, it instantaneously announces the start

 of an election and sends messages to all other

 existing nodes with higher IDs.

• In response, the higher ID nodes return an OK

 message, and the node selects the highest ID node

 among them after receiving the responses.

• After electing the highest node, it sends a GRANT

 message to the selected highest ID node.

• Upon receiving the GRANT message, the highest ID

 node then sends a new message to all other existing

 nodes as the new leader.

• If, after sending the message, the node does not

 receive either a response or an OK message from

 other existing nodes, it broadcasts itself as the new

 leader node and sends confirmation to all other

 active nodes.

• The algorithm will run again on recovery with the

 highest priority ID node.

Figure 3. Leader Election by M.S. Kordafshari et al. (2005)

From Figure 3, the election process can be understood as

follows:

a) Node 2 detects that the leader node (Node 5) is

 down. Therefore, it initiates an election and sends

 an election message to Nodes 3, 4, and 5.

b) An OK message is sent to all nodes as a response.

c) Upon receiving the replies, Node 2 sends a GRANT

 message to Node 4, as it contains the highest node

 ID.

d) When Node 4 receives the GRANT message, a

 leader message is broadcast to all other existing

 nodes.

This algorithm also suffers from the following deficiencies:

• If a node becomes down either while sending the

 election message or after receiving the priority

 number from higher ID nodes, the nodes will wait

 for a time of 3D for the leader message, where D is

 the average propagation delay. During this period,

 the nodes will recommence the algorithm if they do

 not receive any leader message, which is redundant

 (Kordafshari et al., 2005).

• The higher the number of nodes, the distinct

 precedent of the modified bully algorithm will

 remain at that moment in the system, which will

 cause repetitive election.

• The total amount of message passing, and network

 traffic will increase as a result of every redundant

 election.

2.3 Enhanced Bully Algorithm by Minhaj Khan, Neha

 Agarwal, and Jeeshan Ahmad Khan

This algorithm introduced the electing coordinator concept,

which reduces the amount of unnecessary message passing

and redundant election calls. When nodes detect that the

coordinator has crashed, any of the following can happen:

• Only one node detects the crash.

• More than two nodes detect the crash.

• Every node detects that the leader is crashed.

• The node with the second-highest ID detects the

 crash.

This algorithm proposes that an election message should be

sent by other nodes to the second-highest ID node. This node

will then check whether the leader node is active. If the

coordinator fails to respond again, then the second-highest

ID node will elect itself as the new leader and send a

notification to all other active nodes through a leader

message (Minhaj et al., 2017). Three different variables are

used to store the leader: the node ID, the ID of the leader

that has crashed recently and the ID of the new leader (to

reduce the total number of messages passing during the

election).

41

Regular Issue Malaysian Journal of Science

DOI:https//doi.org/10.22452/mjs.vol41no3.5

Malaysian Journal of Science 41(3): 38-43 (October 2022)

Figure 4. Leader election by Minhaj et al. (2017)

From Figure 4, the election process is clarified as follows:

a) The leader node (Node 5) has crashed, which is

 detected by Nodes 2 and 3.

b) Nodes 2 and 3 send an election message to the

 second higher node (Node 4).

c) After receiving the election message, Node 4 checks

 whether the leader has crashed.

d) When Node 4 detects that the leader node is down,

 it sends a message with the new leader ID and the

 recently crashed leader ID to all active nodes.

This algorithm has the following major drawbacks:

• When all nodes (n) detect at a certain time that the

 leader has crashed, this results in the system having

 a total number of messages of 3 × (n – 2) + 1 and a

 time complexity of O (n).

• If multiple nodes (n) detect that the leader is down,

 the number of messages passing for detecting the

 new leader will be (2 × x) + 1 + (n – 2) with a time

 complexity of O (n).

3. Results and Discussions

In this section, a waiting time-based bully algorithm is

introduced based on the enhanced bully algorithm

(Kordafshari, 2005). According to the enhanced bully

algorithm, a large number of messages pass when multiple

nodes detect that the leader is down. Therefore, in order to

reduce the number of messages passing and improve

efficiency, a waiting time is introduced in the proposed

algorithm. It implies that when a node notices that the leader

is down, it does not instantly broadcast. The node instead

waits for a certain amount of time before sending its

message. Depending on their load, nodes are given a waiting

time. If the load is small, then the waiting time will be

shorter, or vice versa. Therefore, during average- or worst-

case scenarios, when multiple (or all) nodes detect that the

leader node is down or crashed, only the node with the

smallest load (shortest waiting time) will send election

message to the second-highest ID node. As the waiting time

of this node will be the shortest, the timeout will occur first,

and the election process will begin soon. As explained

previously, the second-highest process ID node will check the

leader again by sending a message. If it also detects that the

leader has failed, then it will declare itself the new leader by

sending a leader message to all other active nodes. This

process will prevent multiple nodes from sending election

messages at the same time. Furthermore, it is very unlikely

for multiple nodes to have the same waiting time, as this

time depends on the load. Again, if the second-highest ID

node is unavailable or is lost and cannot respond within the

timeout, then the election requesting node will send the

election request to the third highest process ID node. This

process will continue after each timeout.

3.1 Algorithm

In the present algorithm, when N number of nodes detects

that the leader node is down, the nodes respond according

to their predefined waiting time. This waiting time is

calculated and assigned to the nodes according to the

following formula:

WaitingTime= propagation delay + verification time,

where the propagation delay describes the time, a packet

takes to reach its destination from the source, the

verification time defines the duration to check whether the

leader is down or not, and w is a weight value defining the

load on the node.

If there are five nodes in a distributed system and when the

leader node is down, then the waiting time for the remaining

four nodes can be assigned according to the following steps:

WaitingTime for Node 4 (highest process ID) = 0 ms (with

minimal load)

WaitingTime for Node 3 (2nd highest process ID) = (2 ×

propagation delay + verification time)

WaitingTime for Node 2 (3rd highest process ID) = (2 ×

propagation delay + verification time) × 2

WaitingTime for Node 1 (3rd highest process ID) = (2 ×

propagation delay + verification time) × 3

After the waiting time has elapsed, the corresponding node

sends an election message to the second-highest process ID

node, after which the second-highest node checks the

leader’s status. If the leader node is down, it will broadcast a

leader message to all active nodes, and the remaining nodes

will not send any election messages; otherwise, it will discard

the election message.

42

Regular Issue Malaysian Journal of Science

DOI:https//doi.org/10.22452/mjs.vol41no3.5

Malaysian Journal of Science 41(3): 38-43 (October 2022)

Figure 5. Pseudo code for the scenario when all nodes

detect that the coordinator node is down.

3.3 Example

The election process according to the proposed algorithm is

shown in Figure. 6. The steps can be described as follows:

a) Leader/coordinator Node 5 is down.

b) Nodes 1, 2, and 3 detect leader failure at the same

 time.

c) Based on the waiting time span, Node 3 sends an

 election message to the second-highest process ID

 node (Node 4). In this case, Nodes 1 and 2 will not

 send an election message to Node 4, as their

 waiting time is greater.

d) Node 4 checks the coordinator again and finds that

 the leader is down.

e) Finally, Node 4 sends a leader message to all active

 nodes and broadcasts itself as the new leader node.

 Upon receiving the message, all other nodes

 (active) update their table and store Node 4 as the

 new leader.

According to the average- and worst-case scenarios of the

enhanced bully algorithm (Kordafshari, 2005), when multiple

nodes (p) or all nodes (n) detect leader failure, the total

number of messages passing will be 2 × p + 1 + (n – 2) and 3

× (n – 2) + 1 (Kordafshari, 2005). However, in the proposed

algorithm, when a multiple number (p) of nodes or all nodes

(n) detect that the leader has failed, then the total number

of messages passing between the nodes for electing the

leader will be 2 × (n – 2) + p + 1 and 2 × (n – 2) + 1 + 1.

However, the total number of messages passing within the

nodes for electing the leader could be 3 × (n – 2) + 1, which

is similar to Kordafshari (2005) when a timeout occurs for

every election requesting node. It is very unlikely that this

would happen in normal conditions and could only occur if

the receiver (second-highest process ID node) was also

down.

Figure 6. Steps to select a new leader node when multiple

numbers of nodes find leader as down.

4. Comparison with Previous Algorithms

The performance of the proposed algorithm is compared

with the bully algorithm, modified bully algorithm, and

enhanced bully algorithm by counting the total number of

messages passing during the scenario when multiple

numbers of nodes detect the leader node is down. Table 1

indicates that the proposed waiting time-based bully

algorithm exchanges the least number of messages. Hence,

it detects the leader node failure earlier and can call the

election quickly compared to other schemes. As a result, the

efficiency of the proposed algorithm is better than other

algorithms. This is due to the fact that the proposed

algorithm restricts the nodes by assigning WaitingTime to

send unnecessary redundant messages for verifying the

leader node's failure while only one node, with a higher

processing ID, will do this task first.

A network’s propagation delay and verification time depend

on the system conFigureuration. For this experiment, the

following system conFigureuration was used: Intel i5-4210U

CPU @ 1.70GHz (4 CPUs) ~2.4 GHz, 4 GB RAM, Windows 10

OS, and the network conFigureuration was Wireless LAN IEEE

802.11b/g/n with 3 Mbps bandwidth. The average network

response time was 107.7 ms.

Table 1. Performance comparison of proposed algorithm

with other algorithms

Total
nodes in

a
network

Leader node Election Algorithms
(number of messages)

Bully
Algorithm

Modified
Bully

Algorithm

Enhanced
Bully

Algorithm

Proposed
Algorithm

5 24 14 10 8

10 99 29 25 18

25 624 74 70 48

100 9999 299 295 198

150 22499 449 445 298

43

Regular Issue Malaysian Journal of Science

DOI:https//doi.org/10.22452/mjs.vol41no3.5

Malaysian Journal of Science 41(3): 38-43 (October 2022)

5. Conclusion

A novel waiting time-based bully algorithm to elect the

leader node in a distributed system was proposed in this

article. The algorithm solves the limitations of enhanced

bully algorithms and improves the performance of the

algorithm in terms of message passing. The waiting time

method in the proposed algorithm restricted the nodes from

unnecessary message passing, stopping redundant election

calls. Therefore, the proposed algorithm helps to detect

leader node failure more precisely and elect the new leader

more swiftly.

6. Acknowledgement

Authors acknowledge American International University-

Bangladesh (AIUB) for supporting this research.

7. References

Amit B., Animesh D. (2016). A Timer Based Leader Election

Algorithm, IEEE Conference.

Balmukund M., Ninni S. & Ravideep S. (2014). Master-Slave

Group Based Model For Co-Ordinator Selection, An

Improvement of Bully Algorithm, International

Conference on Parallel, Distributed and Grid Computing,

Solan, 457-460,

Beaulah SP, Thriveni J, Venugopal, K., & Patnaik LM (2013).

An improved leader election algorithm for distributed

systems, International Journal of Next-Generation

Networks (IJNGN). 5(1): 21-29.

Garcia-Molina H, (1982). Elections in distributed computing

system. IEEE Transaction on Computer C-31:48-59.

Kordafshari MS, Gholipour M., Jahanshahi M. & Haghighat

AT. (2005) Modified Bully Election Algorithm in

Distributed Systems. WSEAS International Conference on

Computers.

Kordafshari, MS. M. Gholipour, Jahanshahi M. & Haghighat

AT. (2005). Two novel algorithms for electing coordinator

in distributed systems based on bully algorithm, the

fourth WSEAS International Conference on Software

Engineering, Parallel and Distributed Systems.

Mamun QH, Masum SH & Mustfa MA. (2017). Modified bully

algorithm for electing coordinator in distributed systems,

in Proc. 3rd WSEAS International Conference on Software

Engineering, Parallel and Distributed Systems :22-28.

Minhaj K., Neha Agarwal & Jeeshan AK. (2017). An Enhanced

Bully Algorithm for Electing a Coordinator in Distributed

Systems. International Journal on Recent and Innovation

Trends in Computing and Communication 5(5): 1092-

1097.

Rahman M. & Nahar A. (2009). Modified Bully Algorithm

using Election Commission. MASAUM Journal of

Computing 1(3): 439-446,

Sathesh BM. (2015). Optimized Bully Algorithm.

International. Journal of Computer Application. 121(18):

0975 – 8887.

