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ABSTRACT   Indonesian Meteorology, Climatology, and Geophysics Agency (BMKG) uses 

Numerical Weather Prediction (NWP) for short-term weather forecast but it gives biased result. 

Therefore, this study implements Univariate Partial Least Square (PLS) as Model Output Statistics 

(MOS) for temperature and humidity forecast. This study uses the maximum temperature (Tmax), 

minimum temperature (Tmin), and relative humidity (RH) which are called response variables and 

NWP as predictor variable. The results show that the performance of the model based on Root Mean 

Square Error of Prediction (RMSEP) are considered to be good and intermediate.  The RMSEP for 

Tmax in all stations is intermediate (0.9-1.2), Tmin in three stations is good (0.5-0.8), and humidity 

in three stations is also good (2.6-5.0). The prediction result from the PLS is more accurate than the 

NWP model and able to correct an 89.94% of the biased NWP for Tmin forecasting. 

 

Keywords:   MOS, NWP, PCA, PLS, Temperature and Humidity. 

 
 

1. INTRODUCTION 
 

Indonesia is one of the archipelago 

states with a tropical climate, having a dynamic 

and complex weather and atmospheric system. 

The atmosphere also has a significant role in 

the global weather and climate systems 

(Tjasyono, 2004). Weather is considered to be 

the part that cannot be separated from human 

activity and influences the various areas of life. 

Dealing with it, an efficient method is needed 

for weather forecasting, especially in the short-

term forecasting (Wardani, 2010). Indonesian 

Meteorology, Climatology, and Geophysics 

Agency (BMKG) has forecasted a short-term 

weather by comparing and observing a weather 

pattern and condition that happened the day 

before, and generally, the accuracy of 

forecasting will vary since it largely depends 

on the forecaster’s experience. 

 

Information about weather forecasts 

has been published by BMKG including 

maximum temperature (Tmax), minimum 

temperature (Tmin), and the relative humidity 

(RH). Since 2004, BMKG has been doing a 

study for a short-term weather forecasting 

using Numerical Weather Prediction (NWP) 

data, but the result of the NWP forecasting was 

biased for a location that had complex high-

resolution topography and vegetation. Thus, 

Clark et al. (2001) used the Model Output 

Statistics (MOS) to optimize the utilization of 

NWP output to produce more accurate weather 

forecasts. 

 

MOS is a method for modeling of the 

relation between the weather observation result 

and the NWP output based on a regression 

method. MOS will determine the statistical 

relationship between the predictor variable and 

the NWP model response variable for a certain 

time projection (Glahn and Lowry, 1972). In 

this study, we use Univariate Partial Least 
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Square (PLS) as the MOS method, PLS utilizes 

a univariate response and only has a single 

objective function and a single response 

variable. 

The response variable is weather 

observation data, while the predictor variable 

is the output data of the Numerical Weather 

Prediction Conformal Cubic Atmospheric 

Model (NWP CCAM). The NWP data is taken 

from 9 measurement grids for every variable so 

that the complexity will be high and the 

multicollinearity potentially occurs. This high 

complexity can be tolerated using PCA 

(Principal Component Analysis) process to 

reduce the dimension of the grid. The result 

from this dimension reduction will be used as 

the predictor variable for the PLS. Then, the 

PLS result through the PCA as its pre-

processing stage will be compared with the 

actual data and the NWP model by looking at 

RMSEP (Root-Mean-Square-Error Prediction) 

and %IM (percentage improval) criteria. 

 

We describe the Principal Component 

Analysis (PCA) method, MOS Modeling using 

PLS, variables used, and model evaluation in 

section 2. In section 3, we apply the method to 

forecast temperature and humidity, also show 

the results of our analysis. Finally, section 4 

presents the conclusion of this study. In this 

study, we use statistical approach to explain 

about temperature and humidity forecast. 

 

 

2. METHODS AND MATERIALS 

 

2.1  Principal Component Analysis 

 

Principal component analysis (PCA) is 

to reduce multicollinearity and the dimension 

of data. The result will be a new data with 

reduced variable but still able to explain the 

variability of data (Joliffe, 1986). If a random 

Vector 
1 2
, ,...,T

p
X X X   X  has a covariance 

matrix of Σ with the eigenvalue of 

1 2
... 0

p
      , then the linear 

combination will be in (1).
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p
PC  = the p th linear combination, the p th biggest variance  

p
X  = the p th origin variable 

p
e     = the p th eigenvector 

 

The i th linear combination can be generally written as follows in (2). 

 

                                             ,  1,2,...,T

i iPC i p e X                  (2) 

 

So that,  ,PC ,   , 1,2,...,pT

i ik k
Cov PC i k e Σe . The principal components do not have any 

correlation among each of them and have the same variance with eigenvalue from Σ, so as in (3). 

 

               11 22 1 2
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                        (3) 

 

The number of principal components is k  where k p  and the proportion of total variance that can 

be explained by the k th principal component as follows: 
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According to Johnson and Winchern (2007), 

there are several points to determine the 

amount of PC: 

1. Observing the scree plot, as it shows the 

amount of eigenvalue i
 . If the line created 

at the scree plot has a certain big range, 

then the PC on this line will be taken. 

2. The amount of the PC taken is chosen 

according to the amount of eigenvalue that 

is greater than 1 (if the PC is obtained from 

the correlation matrix). 

3. The amount of PC taken should have a 

cumulative variance percentage of 80% to 

90%. It means that the PC should be able 

to explain data variability of at least 80%. 

 

2.2 MOS Modeling using PLS  

 

MOS is a modeling between the 

weather observation result and the output of 

NWP based on regression. According to Wilks 

(2006), the general mathematical model of 

MOS is shown in (5).

 

 

                                                             ˆ
t tMOS

Y f X                  (5) 

 

                                                       ˆ
t

Y = weather forecast at the time-t 

                                                      t
X  = output variables of NWP at the time-t 

 

PLS (Partial Least Square) is an 

efficient statistical method for predicting a 

small data sample with a lot of variables that 

might be correlated with each other. By doing 

a computer calculation, PLS becomes easier to 

be implemented for a great amount of data 

without the need to provide assumption 

(Wilks, 2006). In PLS, the dimensional 

reduction and the regression process are done 

simultaneously. Then T is denoted as the 

latent variable or score, which is obtained from 

random sample variable matrix decomposition

n c . P  is called the X-loadings p c  and Q  

is called Y-loadings q c . The PLS is based on 

the latent component decomposition from (6)

 

 

                                                           
T

T
 
 

Y TQ F
X TP E  .                (6) 

 

Hence, the X matrix is n p  and Y is n q . E  and F  are residual matrices that are each of which 

are n p  and n q . 

The PLS is just like the principal component regression that is a method that forms the latent 

component matrix T as the linear transformation from X, 

 

                                                              *T XW                  (7) 

 

*W is the weighting matrix sized 𝑝 × 𝑐 with 𝑐 is the number of latent components. The *W  can be 

obtained using (8). 

 

                                                           
1

* T
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The latent component is used to predict Y, substituting the origin variable, X. When T is 

formed, we can then obtain 
T

Q  from the smallest quadratic method as in (9).   

 

                                                           
1ˆ T T T


Q T T T Y                  (9) 

 

From equation (6), 
T

 Y TQ F and the matrix B is a regression coefficient matrix for the 

model  Y XB F , then the equation (10) is obtained. 
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The estimator of B  is  
1

*ˆ T T


B W T T T Y . So that we can obtain a conjecture for Y  as in (11). 
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The PLS can be used for both 

univariate response and multivariate response. 

This study is utilizing the PLS for the 

univariate response with the intent to obtain 

each modeling result from the response 

variable separately. The amount of latent 

variable is determined by a statistic assessing 

the accuracy of estimation, Prediction Residual 

Sum of Square (PRESS). The PRESS value for 

the univariate response is shown in (12).

 

 

                                                
2

1

1

ˆ
n

t t

t

PRESS y y




                (12) 

 

The modeling using PLS is done when the 

response variable is to be analyzed separately 

so that Y  is a response matrix variable 1n . 

For a certain weight amount 

 11
,...,

T

pi
w w

i
w , the covariance between 

the response variable Y  and the random 

variable 
1 1 2 2

...
i pi pi i

T w X w X w X    can be 

obtained using (13) 

 

                                              
1

, T T

i i
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n
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Covariance between 
i

T  and 
j

T  for  ;  1,2,...,i j j c   
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w  is defined to be the square of the covariance 

between Y  and the latent component, w  is 

maximized when each of the latent 

components does not have any correlation. 

Generally, the PLS only has one objective 

function. This objective function that is 

maximized on PLS for 1,2,...,i c  will 

produce a weighting vector using (15)

 

 

                                             arg max
i i
 T T Tw w X YY Xw                          (15) 

 

as long as: 1T

i i
w w ; 0T T T

i j i j
 w X Xw t t , 

for 1,2,..., 1j i  . 

We can see from the formula that the 

latent component formed on PLS has 

maximum covariance with the response 

variable so that the prediction is very good 

(Clark et al., 2001). PLS Algorithm (Boulesteix 

et al., 2006) 

 

a. First iteration h=1, Maximum iteration 

max
h p  

b. Determine /T Tw X y y y  

c. Calculate t Xw  

d. Calculate the loading Y,  /T Tq y t t t  

e. Renew X and Y, as in (16)

 

                                                        

/ ( )T T

T

T



 

 

p X t t t

X X tp

Y Y tq

                          (16) 

 

The value for measuring the goodness of the 

model’s prediction is the determination of 

coefficient value ( 2R ) that can be calculated 

using (17)
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2.3 Model Validation 

 

One of the measurements that can be 

used to know the quality of forecasting result 

is Root Mean Square Error of Prediction 

(RMSEP) (Wold et al., 2001). The formula we 

can use to obtain the RMSEP value from the 

univariate modeling is as (18).
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                        (18) 

 

 

The smaller the RMSEP value, the better the 

forecasting model. The criteria of RMSEP 

value can be used as a base for model 

validation which is shown in Table 1.
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Table 1: RMSEP value criteria (Source: BMKG). 

 

Criterion 
RMSEP 

Temperature Humidity 

Very good 0.0 - 0.4 0.0 - 2.5 

Good 0.5 - 0.8 2.6 - 5.0 

Intermediate 0.9 - 1.2 5.1 - 7.5 

Bad 1.3 - 1.6 7.6 - 10.00 

Very bad > 1.6 > 10.00 

 

 

2.4 Bias Corrector Measurement 

 

The percentage improvement of MOS model against the NWP is shown by the Percentage 

Improval (%IM) that can be calculated using formulas as (19)

 

 

                                       % 100%NWP MOS

NWP

RMSEP RMSEP
IM

RMSEP


  .                       (19) 

 

 

 

The value of %IM is from 0% to 100%. The 

higher value of %IM means the MOS model 

has a better correction of the NWP’s biased 

forecasting result. 

 

 

2.5 Data and Variables 

 

The data used in this study is a 

secondary data from BMKG, i.e. the output of 

the daily NWP CCAM from 1 January 2009 to 

31 December 2010. Four observation stations 

that are used in this study are Citeko, 

Kemayoran, Pondok Bentung, and Tangerang. 

The response variable is the surface’s weather 

observation data that consist of Tmax, Tmin, 

and RH measured directly in every station. The 

predictor variable is the output of the NWP 

CCAM model. Meanwhile, the NWP CCAM 

parameter used is taken from the previous 

study’s parameter by a meteorologist, shown in 

Table 2 for the MOS model.  

 

The used parameters from the NWP 

CCAM for every observation station are 18 

parameters. The 11 parameters are measured 

on the surface level (with a height of ±2 meters 

above the sea level), while the other 7 

parameters are measured on a three level of 

different air pressures, where level 1 is 100 

millibar pressure, level 2 is 950 millibar 

pressure, and level 4 is 850 millibar pressure. 

Therefore, the total parameters are 32 

parameters. Each parameter is measured on 9 

measurement grids  3 3  in the nearest 

location from the place of observation station.
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Table 2: NWP CCAM parameters. 

 

No. Variable Level 

1 Surface Pressure Tendency dpsdt) Surface 

2 Water Mixing Ratio (mix) 1, 2, 4 

3 Vertical Velocity (omega) 1, 2, 4 

4 PBL depth (pblh) Surface 

5 Surface Pressure (ps) Surface 

6 Mean Sea Level Pressure (psl) Surface 

7 Screen Mixing Ratio (qgscm) Surface 

8 Relative Humidity (rh) 1, 2, 4 

9 Precipitation (rnd) Surface 

10 Temperature 1, 2, 4 

11 Maximum Screen Temperature (tmaxcr) Surface 

12 Minimum Screen Temperature (tmincr) Surface 

13 Pan Temperature (tpan) Surface 

14 Screen Temperature (tscrn) Surface 

15 Zonal Wind (u) 1, 2, 4 

16 Friction Velocity (ustar) Surface 

17 Meridional Wind (v) 1, 2, 4 

18 Geopotential Height (zg) 1, 2, 4 

 

 

3. RESULTS AND DISCUSSION 

 

The analysis and evaluation steps for 

Tangerang Station will be explained in detail, 

while the rest of the stations will be just a slight 

summary since the occurrence analysis steps 

are actually the same. 

 

3.1 Pre-Processing the NWP Data using 

PCA Method 

 

Each NWP variable is measured on 9 

measurement grids. Hence, there are 162 (

18 9 ) predictor variables will increase the 

complexity of the model. To solve it, this study 

used a dimensional reduction i.e. PCA. The 

amount of principal components is determined 

by choosing which have an eigenvalue larger 

than one. The principal component for the 

NWP variable in Tangerang Station is shown 

in Table 3.

Table 3: NWP variable’s principal components in Tangerang station. 

 

Variable PC 
Eigen 

Value 
Var. Variable PC 

Eigen 

Value 
Var. 

Dpsdt 1 9.2904 99.9857 temp2 1 8.3576 97.1532 

mixr1 1 8.7048 92.4047 temp4 1 8.7006 99.0090 

mixr2 1 8.9565 96.2157 Tmaxscr 1 8.5420 98.0922 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
temp1 1 8.4996 95.8768 zg4 1 8.5784 97.5735 

 

 

Table 3 shows that in Tangerang 

station, each NWP variables produces 1 

component, except for the zg level 1 variable 

that is 3 components, and zg level 2 variable 

that is 2 components. Therefore, the total 

amount of the principal components that are 
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formed in Tangerang Station is 35 

components, 39 components in Citeko Station, 

35 components in Kemayoran and Pondok 

Betung Station. The variability of NWP 

variables explained by the principal 

components varies from 92.40% until almost 

100%. The principal components will be used 

as the predictor variables on the MOS 

modeling using PLS.

3.2 Prediction Modeling of Tmax, Tmin, 

and RH using PLS Method 

 

The first step of PLS modeling in 

Tangerang Station is to determine the optimum 

amount of component of each model using a 

cross validation.

  

 

Table 4: The amount of the optimal components in four stations. 

 

Station Variable Amount of components 
Smallest 

PRESS value 

Citeko 

Tmax 11 0.7317 

Tmin 7 0.8627 

RH 29 0.7554 

Kemayoran 

Tmax 9 0.7035 

Tmin 6 0.8627 

RH 6 0.8653 

Pondok Betung 

Tmax 22 0.7154 

Tmin 5 0.9079 

RH 5 0.9084 

Tangerang 

Tmax 6 0.7081 

Tmin 3 0.9478 

RH 2 0.9476 

 

 

On the cross-validation process, every iteration 

will produce a PRESS value. Model with the 

smallest PRESS value will be the model that 

holds the optimum amount of components. The 

optimal component from the PLS in the four 

stations is shown in Table 4. 

 

The optimal amount of component in 

each station is then used for the predictive 

modeling process of Tmax, Tmin, and RH. The 

modeling process will be explained according 

to the steps of the PLS modeling which have 

been described previously. 

1. Calculating PLS Weighting in Tangerang 

Station 

 

The weighting matrix (W) is obtained from 

a merge of an every weighting vector extracted 

according to the amount of optimal component 

that has already been determined before. The 

component of W matrix in Tangerang Station 

(i.e. Tmax, Tmin, and RH) is shown in Table 

5, Table 6, and Table 7 respectively.
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Table 5: The weight value of X used for Tmax of PLS modeling in Tangerang station. 

 

Variable  w1 w2 w3 … w6 

PC.dpsdt 0.0417 0.1248 -0.1882 … -0.2782 

PC.mixr1 -0.0130 0.0309 -0.2308 … -0.2094 

PC.mixr2 0.0714 0.1292 -0.2660 … 0.0641 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 
PC.zg4 -0.2603 0.1695 -0.0784 … -0.1689 

 

Table 6: The weight value of X used for Tmin of PLS modeling in Tangerang station. 

 

Variable w1 w2 w3 

PC.dpsdt -0.0318 0.1803 0.1639 

PC.mixr1 -0.3385 -0.1831 0.1406 

PC.mixr2 -0.2958 -0.0666 0.1023 

⋮ ⋮ ⋮ ⋮ 
PC.zg4 -0.2933 0.0598 -0.1046 

 

Table 7: The weight value of X used for RH of PLS modeling in Tangerang station. 

 

Variable w1 w2 

PC.dpsdt -0.0651 -0.0237 

PC.mixr1 -0.1994 -0.0207 

PC.mixr2 -0.2408 -0.0206 

⋮ ⋮ ⋮ 
PC.zg4 0.0579 -0.3081 

 

2. X-Scores Formation 

 

The obtained X-scores will be the T 

matrix consisted of a vector t component. The 

X matrix is the predictor matrix from the result 

of PCA operation, while w is the weighting 

value that is obtained previously. The X-scores 

for Tmax is shown in Table 8, and Table 9 for 

the Tmin and RH.

 

 

Table 8: The X-scores for Tmax of PLS modeling in Tangerang station. 

 

N t1 t2 … t6 

1 -4.2611 0.1455 … -1.0065 

2 -0.6483 1.0485 … -0.5370 

3 -1.0081 2.1319 … -2.1069 

⋮ ⋮ ⋮ ⋱ ⋮ 
637 0.9811 -0.2294 … 0.2630 
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Table 9: The X-scores for Tmin and RH of PLS modeling in Tangerang station. 

 

N 
Tmin  RH 

t1 t2 t3 t1 t2 

1 -1.1287 1.7879 -1.7765 2.9974 -2.8224 

2 -1.4827 0.5584 1.5362 -1.3023 -2.7302 

3 -3.9506 0.8837 3.6885 -2.6981 -3.8481 

⋮ ⋮ ⋮  ⋮ ⋮ 
637 0.1494 -0.9879 -0.5842 -0.5341 0.2010 

 

3. Loading Factor Matrix Formation for Y 

 

Y-loading is a loading related to the 

response variable. The loadings factor is 

obtained from the combination of loadings Y 

factor of each component. The loadings factor 

matrix for Y is shown in Table 10.

 

 

Table 10: Loadings Y factor of PLS modeling in Tangerang station. 

 

Q Tmax Q Tmin q RH 

q1 0.2356 q1 0.1354 q1 0.2150 

q2 0.1921 q2 0.0815 q2 0.1577 

q3 0.1332 q3 0.0532   

q4 0.0821     

q5 0.0874     

q6 0.0543         

 

4. Calculating Regression Coefficient 

 

The PLS coefficient (B) can be 

obtained after matrix W, Q, and T. The 

component of the PLS coefficient matrix on 

Tangerang Station is shown in Table 11.

 

 

Table 11: PLS coefficient in Tangerang station. 

 

Variable Tmax Tmin RH 

PC.dpsdt 0.0012 0.0243 -0.0212 

PC.mixr1 -0.0320 -0.0707 -0.0566 

PC.mixr2 0.0436 -0.0520 -0.0677 

⋮ ⋮ ⋮ ⋮ 
PC.zg4 -0.0553 -0.0479 -0.0331 

 

 

5. PLS Preparation 

 

The preparation of PLS is done by the 

regression coefficient taken from Table 11 

with the predictor variable that is obtained 

from PCA. When the PLS is formed, the 

conjectured value of the Tmax, Tmin, and RH 

can also be obtained. Those conjecture value, 

especially the conjectured value of the training 

data can be used to test how good the formed 

model with R2 is, as the higher the R2 value, the 

better the model is. The obtained R2 value from 

the PLS in the four stations is shown in Table 

12.
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Table 12: The value of R2 from PLS in four stations. 

 

Station Variable 𝑹𝟐(%)  

Citeko 

Tmax 52.75 

Tmin 41.99 

RH 50.89 

Kemayoran 

Tmax 54.57 

Tmin 31.26 

RH 46.33 

Pondok Betung 

Tmax 53.57 

Tmin 24.44 

RH 47.03 

Tangerang 

Tmax 55.33 

Tmin 14.93 

RH 31.96 

 

Table 12 shows that the average value 

of 2R  obtained from the PLS is generally not 

that good, despite that the 2R  value for the 

Tmax modeling (maximum temperature as 

response) alone is good, ranging from 52.75% 

to 55.33%, because the R2 value from the Tmin 

modeling (minimum temperature as response) 

is quite small with a range of 14.93% - 41.99% 

and the 2R value from the RH modeling that 

ranges from 31.95% to 50.89%. The 2R  value 

for the Tmax modeling in Tangerang Station is 

55.33%, means that there is 55.33% Tmax 

variance that can be explained by the formed 

model. 

 

3.3 PLS Validation 

 

The model validation aims to know the 

accuracy and the goodness of the formed 

model. The PLS validation is done by testing 

data with the observation data so that we can 

obtain the RMSEP value. The RMSEP value in 

four stations is shown in Table 13. 

 

Generally, the RMSEP value of the 

Tmax modeling using PLS has an intermediate 

result according to the BMKG criterion. In the 

other side, the RMSEP value of the Tmin in 

Citeko, Kemayoran, and Pondok Betung 

Station has a good result of 1.0857. This PLS 

modeling is also has a good criterion if used for 

RH modeling in Citeko, Kemayoran, and 

Pondok Betung Station, while the RH 

modeling in Tangerang Station has an 

intermediate criterion because it holds the 

RMSEP value of 5.7314. The result of this PLS 

modeling is then regarded as the MOS model.

 

Table 13: RMSEP value for PLS in four stations. 

 

Station 

 
Variable RMSEP RMSEP Criterion 

Citeko 

Tmax 1.1261 Intermediate 

Tmin 0.5183 Good 

RH 4.9307 Good 

Kemayoran 

Tmax 0.9698 Intermediate 

Tmin 0.7502 Good 

RH 4.3629 Good 

Pondok Betung 

Tmax 1.0479 Intermediate 

Tmin 0.8563 Good 

RH 4.6994 Good 
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Tangerang 

Tmax 0.9485 Intermediate 

Tmin 1.0857 Intermediate 

RH 5.7314 Intermediate 

 

3.4 Comparison of Accuracy between 

NWP Prediction Result and MOS 

Model Result 

 

The NWP model produces a biased 

forecast so that it needs a post-processing using 

the MOS method, i.e. PLS. The percentage of 

the amount of biased NWP data that can be 

corrected by the MOS model is shown by the 

Percentage Improval (%IM), where the 

RMSEPNWP  is obtained based on the 

comparison of the NWP data on the fifth grid 

(the nearest grid from the observation station) 

and the observation data for the Tmax, Tmin, 

and RH variables. The amount of biased data 

that can be corrected by the MOS model with 

the PLS in the four stations are shown in Table 

14.

Table 14: The value of RMSEPNWP, RMSEPMOS, dan %IM. 

 

Station Variable RMSEPMOS RMSEPNWP %IM 

Citeko 

Tmax 1.1261 4.1572 72.9121 

Tmin 0.5183 5.1505 89.9369 

RH 4.9307 13.0509 62.2195 

Kemayoran 

Tmax 0.9698 2.9491 67.1154 

Tmin 0.7502 1.9110 60.7431 

RH 4.3629 7.1804 39.2388 

Pondok Betung 

Tmax 1.0479 3.3227 68.4624 

Tmin 0.8563 1.0812 20.8010 

RH 4.6994 7.5821 38.0198 

Tangerang 

Tmax 0.9485 3.1089 69.4908 

Tmin 1.0857 1.3400 18.9776 

RH 5.7314 6.5589 12.6164 

 

 

Table 14 shows that the RMSEP that is 

obtained from the NWP model is greater than 

the RMSEP from the MOS model, which 

means that the MOS model is consistently 

better to be used to predict the Tmax, Tmin, 

and RH rather than the NWP model. The MOS 

model is able to correct from 18.9776% to 

89.9369% of the biased NWP for forecasting 

the Tmin. The same table also shows that the 

RMSEPNWP  in the Citeko Station is the 

greatest among the other four stations so that 

Citeko Station has a %IM that holds the 

greatest bias corrector. This is because the 

Citeko Station is located in the mountain area 

that holds a complex vegetation, therefore 

producing a big amount of bias for the NWP 

model. 

4. CONCLUSION 

 

Most of the principal components that 

are formed by the result of the NWP variables 

reduction within the 9 measurement grids are 

exactly one component. The validation result 

of the PLS with the RMSEP criterion shows 

that the Tmax belongs to intermediate for all 

stations, Tmin has a good criterion in three 

stations (i.e. Citeko, Kemayoran and Pondok 

Bentung), and RH has a good criterion in three 

stations (i.e. Citeko, Kemayoran and Pondok 

Bentung). The prediction results from the PLS 

is more accurate than the NWP model and able 

to correct an 89.94% of the biased NWP for 

Tmin forecasting (response as a result of PLS 

modeling). Therefore, we can conclude that the 
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PLS can solve the NWP problem regarding the 

relation function and dimension reduction. 

 

The modeling result from this study is 

recommended to be used for BMKG in 

forecasting the temperature and humidity 

because this model is capable to produce a 

smaller bias compared to the NWP model from 

the BMKG itself. It must be noted that a 

method comparison should be done in each 

station to obtain the best method due to a 

potential spatial effect that may occur. 
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