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ABSTRACT          Wiener’s short secret exponent attack is a well-known crypt-analytical result 

upon the RSA cryptosystem using a Diophantine’s method called continued fractions. We recall 

that Wiener’s attack works efficiently on RSA with the condition that the secret exponent  d <
1

3
N

1

4. Later, the upper bound was improved satisfying 𝑑 <
√6√2

6
𝑁

1

4 . In this work, we present 

another proof to Wiener’s short secret exponent satisfying 𝑑 <
1

2
𝑁

1

4 . We remark that our result is 

slightly better than the previously mentioned attacks. 

 

Keywords: RSA cryptosystem, continued fractions, secret exponent, cryptanalysis, Wiener’s 

theorem. 

 
 

 

INTRODUCTION 

 

           From the beginning of time until 

1970’s, the technology for practicing secret 

communication, which is widely known as 

encryption and decryption, was always done 

in a symmetrical manner. In early 1978, the 

RSA cryptosystem (Rivest, R., Shamir, A. 

and Adleman, L, 1978) that was introduced 

(abbreviated accordingly to its creator; 

Rivest, Shamir, and Adleman) became a 

phenomenon in the world of secrecy of which 

was regarded as the first practical realization 

of the asymmetric cryptosystem as opposed 

to symmetric cryptosystem. 

 

           The core design of the RSA 

cryptosystem is based on the number-

theoretic object called the integer 

factorization problem. The intractability to 

solve the said problems with current 

computational power is the source of its 

security (i.e. particularly in factoring of the 

form 𝑁 = 𝑝𝑞). Additionally, another source 

of security of RSA cryptosystem lies on the 

difficulty to solve the RSA key equation of 

the form 𝑒𝑑 ≡ 1(mod𝜙(𝑁)) where 𝜙(𝑁) =
(𝑝 − 1)(𝑞 − 1). Solving the RSA key 

equation meaning that the objective is to 

recover the unknown value of 𝑑, given only 

𝑒 and 𝑁. This will be the focus in this work. 

 

           For practicality purpose, the private 

exponent 𝑑 of RSA decryption is tended to be 

made small, thus the RSA cryptosystem will 

have tremendous decryption speed. 

However, if 𝑑 is upper bounded by 
1

3
𝑁1/4, 
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then Wiener (Wiener M., 1990) observe that 

such secret exponent 𝑑 can be easily solved 

in polynomial time. The observation is made 

based on the key equation 𝑒𝑑 − 𝜙(𝑁)𝑘 = 1 

and can be solved efficiently via continued 

fraction method. 

 

           The main idea behind Wiener’s attack 

to solve for the parameter 𝑑 that satisfy the 

inequality |
𝑒

𝑁
−

𝑘

𝑑
| <

1

2𝑑2
. In fact, a classical 

Legendre’s theorem of continued fraction 

expansion shows that the value of 
𝑘

𝑑
 could be 

efficiently obtained from the list of 

convergent of 
𝑒

𝑁
. Thus, as the security of the 

RSA cryptosystem matters, it was proposed 

that such 𝑑 must be generated by choosing an 

integer larger than 
1

3
𝑁1/4 to resist Wiener’s 

attack. 

 

           Afterward, (de Weger, B., 2002) 

demonstrated that the Legendre’s theorem is 

satisfied upon |
𝑒

𝑁−2𝑁1/2+1
−

𝑘

𝑑
|. As a result, 

any secret integer 𝑑 less than 
𝑁3/4

|𝑝−𝑞|
 in no 

longer secure for RSA cryptosystem since 
𝑘

𝑑
 

effciently obtained from a convergent of the 

continued fraction 
𝑒

𝑁−2𝑁1/2+1
. Note that (de 

Weger, B., 2002) considered the situation 

when 𝑝 and 𝑞 are too close (i.e.the difference 

of two primes, |𝑝 − 𝑞| is small). 

Alternatively, even though 𝑝 and 𝑞 are not 

close, (Maitra, S. and Sarkar, S., 2008) 

considered the case of the primes 𝑝 and 2𝑞 

are too close. Furthermore, (Maitra, S. and 

Sarkar, S., 2008)  showed that by replacing 

the 𝑁 − 2𝑁1/2 + 1 from the result in (de 

Weger, B., 2002) with 𝑁 −
3

√2
√𝑁 + 1, then 

𝑘

𝑑
 is a convergent of the continued fraction 

expansion of 
𝑒

𝑁−
3

√2
√𝑁+1

.            

           Motivated from the earlier work of (de 

Weger, B., 2002) and (Maitra, S. and Sarkar, 

S., 2008) of utilizing a good approximation 

of 𝜙(𝑁) methodology, (Asbullah, M. A. and 

Ariffin, M. R. K., 2015) extended such 

cryptanalysis technique to the RSA modulus 

of type 𝑁 = 𝑝2𝑞. A recent survey of RSA-

like cryptosystems that implement such 

modulus can be found in (Asbullah, M. A. 

and Ariffin, M. R. K., 2014; Asbullah, M. A. 

and Ariffin, M. R. K., 2016c). The continued 

fraction technique is also widely used for 

algebraic cryptanalysis such as in (Asbullah, 

M. A. and Ariffin, M. R. K., 2016a) and 

(Asbullah, M. A. and Ariffin, M. R. K., 

2016b) 

 

           We recall that Wiener’s attack works 

efficiently on RSA with the condition that the 

secret exponent 𝑑 <
1

3
𝑁

1

4. Later, Nitaj (Nitaj, 

A., 2013) revisited the Wiener’s theorem and 

proof. As a result, the upper bound was 

improved satisfying 𝑑 <
√6√2

6
𝑁

1

4. In this 

work, we present another proof to Wiener’s 

short secret exponent satisfying 𝑑 <
1

2
𝑁

1

4. 

We remark that our result is slightly better 

than the previously mentioned attacks in 

(Wiener M., 1990) and (Nitaj, A., 2013). 

 

           This paper was written in five main 

sections. In Section 2 we give definitions and 

useful theorems that are needed in our work. 

Section 3 provides mathematical proof of our 

result. We illustrate two numerical examples 

to show how the attack was conducted and 

performance analysis by comparing with 

Wiener’s (Wiener M., 1990) and Nitaj’s 

(Nitaj, A., 2013) attack’s, respectively in 

Section 4. Finally, in Section 5 we end with a 

conclusion of our work. 
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PRELIMINARIES 

 

           In this section, we state the definition 

of continued fraction and useful theorems 

that form the basis for this paper. These 

include the result from (Wiener M., 1990) 

and (Nitaj, A., 2013). 

 

Definition 2.1 (Continued fraction) Each 

rational number 𝑥 can be written as an 

expression of the form 

𝑥 = 𝑎0 +
1

𝑎1 +
1

⋱ +
1

𝑎𝑛+⋱

 

 

           A simple way to show the above 

expression is by the form 𝑥 =
[𝑎0, 𝑎1, 𝑎2. . . . 𝑎𝑛]. We define that the 𝑖𝑡ℎ term 

from the list of the continued fraction to be 

[𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑖] for 𝑖 ≥ 0. 

 

           An important result on continued 

fractions that will be used is the following 

theorem. 

 

Theorem 2.2 (Legendre's Theorem) 

Suppose 𝑥 is written in its continued fraction 

expansion [𝑎0, 𝑎1, 𝑎2, … ] form. If 𝑦, 𝑧 ∈ ℤ 

and coprime such that 

 

|𝑥 −
𝑦

𝑧
| <

1

2𝑧2
 

 

then 
𝑦

𝑧
 is a rational number amongst the 

continued fraction’s convergent of 𝑥. 

 

           Suppose 𝑁 = 𝑝𝑞 is an RSA modulus 

where the bit-length of the primes 𝑝 and 𝑞 are 

in the same size (i.e. 𝑞 < 𝑝 < 2𝑞). Such 

condition will be used throughout this paper. 

 

Theorem 2.3 (Wiener's Theorem) Let 𝑒 be 

an RSA public exponent and 𝑑 be the RSA 

private exponent satisfying the relation 𝑒𝑑 −

𝑘𝜙(𝑁) = 1. Let 𝑑 <
1

3
𝑁

1

4, then the integer 𝑘 

and 𝑑 appeared the continued fraction’s 

convergent of 
𝑒

𝑁
.  

 

           Later, Nitaj (2013) refine the bound of 

𝑑 as stated in the following theorem.  

 

Theorem 2.4 (Nitaj, A., 2013). The integer 

𝑘 and 𝑑 can be obtained from the convergent 

of the continued fraction of 
𝑒

𝑁
, if 𝑑 <

√6√2

6
𝑁

1

4.  

 

 

OUR RESULT 

 

           In comparison to the (Wiener M., 

1990) and (Nitaj, A., 2013) bounds of which 

𝑑 <
1

3
𝑁1/4 and 𝑑 <

√6√2

6
𝑁

1

4, respectively, 

our bound is fixed to 𝑑 <
1

2
𝑁1/4. We begin 

with the following lemma. 

 

Lemma 3.1 Suppose we have the prime 

factors 𝑝 and 𝑞 with 𝑞 < 𝑝 < 2𝑞 and let 𝑁 =
𝑝𝑞 be the RSA modulus. Then  

 
1

21/2
𝑁1/2 < 𝑞 < 𝑁1/2 < 𝑝 < 21/2𝑁1/2 

 

and  

𝑝 + 𝑞 > 2𝑁1/2 
 

Proof. The first statement is straight forward. 

Now, we provide the proof for the second 

statement. Observe the relation of (𝑝 +
𝑞)2 = (𝑝 − 𝑞)2 + 4𝑁. Thus, directly gives 

𝑝 + 𝑞 > 4𝑁 > 2𝑁1/2.   

 

We prove our main result as follows.  

 

Theorem 3.2 Suppose 𝑒𝑑 − 𝜙(𝑁)𝑘 = 1 be 

the RSA key equation. If 𝑑 <
1

2
𝑁1/4, then the 
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secret value of 𝑘 and 𝑑 are easily recovered 

from the continued fraction’s convergent of 
𝑒

𝑁
.  

 

Proof. Let 𝑒𝑑 − 𝜙(𝑁)𝑘 = 1 be the RSA key 

equation. Thus, such equation can be 

transformed as follows. 

 

𝑒𝑑 − 𝑘(𝑁 + 1 − 𝑝 − 𝑞) = 1 
 

𝑒𝑑 − 𝑁𝑘 = 1 − 𝑘(𝑝 + 𝑞 − 1) (1) 

 

Divides both sides of (1) by 𝑁𝑑 and take the 

modulus sign, thus we have  

 

|
𝑒

𝑁
−

𝑘

𝑑
| = |

1 − 𝑘(𝑝 + 𝑞 − 1)

𝑁𝑑
| 

= |
𝑘(𝑝 + 𝑞 − 1) − 1

𝑁𝑑
| 

<
𝑘(𝑝 + 𝑞 − 1)

𝑁𝑑
                (2)  

  

           Let the public RSA exponent 𝑒 <
𝜙(𝑁), then rearranging 𝑒𝑑 − 𝜙(𝑁)𝑘 = 1 we 

have 

𝑘 =
𝑒𝑑 − 1

𝜙(𝑁)
<

𝑒𝑑

𝜙(𝑁)
< 𝑑 

 

Thus (2) straightforward gives 

 

<
𝑝 + 𝑞

𝑁
 

 

           For the Theorem 2.2 to work, it is 

adequate to show that 
𝑝+𝑞

𝑁
<

1

2𝑑2
.  

 

           Hence, by making the secret value 𝑑 as 

the subject and plugging in the condition of 

Lemma 3.1, we have the following result 

 

𝑑 < (
𝑁

2(𝑝 + 𝑞)
)

1/2

 

< (
𝑁

2(2𝑁1/2)
)

1/2

 

=
1

2
𝑁1/4 

 

 

COMPARATIVE ANALYSIS AND 

EXAMPLES 

 

           Table 1 compare our result in Section 

3 with Wiener (1990) and Nitaj’s (2013), 

respectively. The result, as shown in Table 1, 

indicate that regarding the attack and finding 

the secret parameter 𝑑, our result 

significantly improves the previous bound, 

which extends the Wiener’s Theorem by 

16.7%. While a comparison of with Nitaj’s 

theorem reveals slight betterment, which is 

improves significantly by 1.5%. 

 

 
Table 1: Comparison of the bounds on 𝑑 for RSA modulo 𝑁 = 𝑝𝑞 

Reference Bounds for 𝑑 

(Wiener M., 1990) 
𝑑 <

1

3
𝑁

1
4 ≈ 0.333𝑁

1
4 

(Nitaj, A., 2013) 

𝑑 <
√6√2

6
𝑁

1
4 ≈ 0.485𝑁

1
4 

Our work 
𝑑 <

1

2
𝑁

1
4 ≈ 0.500𝑁

1
4 
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 Next, we provide algorithm workflow for 

factoring finding 𝑑 and 𝑘 based on Theorem 

3.2 as follows. 

 

Algorithm 4.1 Algorithm for factoring 

finding 𝑑 and 𝑘 based on Theorem 3.2 

Input: The public key modulus (𝑁, 𝑒) 

Output: The secret value 𝑑 and 𝑘   

1. Compute the continued fraction of 
𝑒

𝑁
. 

2. For each convergent 
𝑘′

𝑑′
 of 

𝑒

𝑁
, compute 

𝑁′ =
𝑒𝑑′−1

𝑘′
.  

3. For 𝑁′ be an integer, proceed to Step 4. 

Else, repeat Step 2.  

4. Compute 𝑒𝑑(mod 𝑁′). 
5. Output the 𝑑 = 𝑑′ and 𝑘 = 𝑘′ if 𝑒𝑑′ ≡

1(mod 𝑁′). Else, repeat Step 2. 

 

           Turning now to the numerical 

examples on our result. Consider an RSA 

modulus 𝑁 and an RSA public key 𝑒 as 

follows. 

 

𝑁 = 1378385319534023909460556858 

95128490833 
 

𝑒 = 11720373558924246698770660273 

5966338617 
 

Example 4.1 As an illustration of Theorem 

3.2, suppose we find a list of the continued 

fraction expansion of 
𝑒

𝑁
 using Algorithm 2. 

Let the above values of 𝑁 and 𝑒 satisfy all the 

requirements of Theorem 3.2. Hence, we will 

have a list of the continued fraction 

expansion of 
𝑒

𝑁
 as follows. 

 

[0,1,
5

6
,
6

7
,
142

167
, ⋯ ,

572547398

673349637
,
1438826739

1692145429
, ⋯ ] 

 

           We find that the secret the integer 𝑘 

and 𝑑 are amongst the list the convergents of 
𝑒

𝑁
. For each convergent 

𝑘′

𝑑′
 of 

𝑒

𝑁
, compute 𝑁′ =

𝑒𝑑′−1

𝑘′
. In fact, 

𝑘′

𝑑′
=

1438826739

1692145429
 gives the 

integer 

 

 𝑁′ = 137838531953402390922574540 

097412197028.  

 

           Next, since 𝑒𝑑′ ≡ 1(mod𝑁′), thus 

according to Algorithm 2, we obtained 𝑑 =
𝑑′ = 1692145429 and 𝑘 = 𝑘′ =
1438826739. 

 

Example 4.2 Let we consider an RSA 

modulus  

 

𝑁 = 1378385319534023909460556858 

95128490833  
 

as the same as in Example 4.1, but with 

different value 𝑒′ as follows;  

 

𝑒′ = 7807982305680256975414497350 

6355376043  

            
Computing the continued fraction expansion 

of 
𝑒′

𝑁
 will give the following list; 

 

[0,1,
1

2
,
4

7
,
13

23
, ⋯ ,

47970613

84685116
,

969859519

1712145431
, ⋯ ] 

 

           We find that the secret the integer 𝑘 

and 𝑑 are amongst the list the convergents of 
𝑒′

𝑁
. In fact, in this example we obtained 

𝑘

𝑑
=

969859519

1712145431
. From here, one can verified that 

𝑒′𝑑′ ≡ 1(mod𝑁′) holds. 
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Let us compare the integers 𝑑 and 𝑘 with the 

upper bound of 𝑑 provided by applying the 

Wiener’s Theorem and Nitaj’s Theorem 

attacks to the same problem. As shown in the 

Example 4.1, we obtained the secret 

parameter 𝑑 = 1692145429, which is much 

larger than Wiener’s upper bound (i.e. 𝑑 <
1142145426) and Nitaj’s bound (i.e. 𝑑 <
1663506620), respectively. 

 

           Referring to the Example 4.2, the 

attack presented in this example use a much 

larger value of 𝑑 yet our attack still finds such 

secret integer 𝑑. Note that, our attack works 

with the maximal value 𝑑 less than 

1713218139 for the respective 𝑁 in both 

examples. Again, the secret integer 𝑑 from 

Example 2 is much larger than Wiener’s 

upper bound (i.e. 𝑑 < 1142145426) and 

Nitaj’s bound (i.e. 𝑑 < 1663506620), 

respectively. Hence, this is in a good 

agreement with our theoretical result, which 

is mathematically proven in Theorem 3.2 and 

as reported in Table 1. 

 

 

CONCLUSION 

 

Note that Wiener’s attack works efficiently 

on RSA with the condition that the secret 

exponent 𝑑 <
1

3
𝑁

1

4, which was using a 

Diophantine’s method called continued 

fractions. Later, the upper bound was 

improved in Nitaj, A., 2013 satisfying 𝑑 <
√6√2

6
𝑁

1

4. In this work, we present another 

proof of using continued fraction method that 

shows a way to obtain the secret exponent 𝑑 

efficiently, satisfying 𝑑 <
1

2
𝑁

1

4. We conclude 

that our result is slightly better than the 

previously mentioned attacks, in term of both 

theoretically and practically, via numerical 

examples. 
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