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ABSTRACT 

The rapid growth of the Internet of Things (IoT) and digital industrial devices has significantly impacted various 

aspects of life, underscoring the importance of the Industrial Internet of Things (IIoT). Given its importance in 

industrial contexts that affect human life, the IIoT represents a key subset of the broader IoT landscape. Due to 

the proliferation of sensors in smart devices, which are viewed as points of contact, as the gathering of data and 

information regarding the IIoT systems and devices operating on the IoT, there is an urgent requirement for 

developing effective security methods to counter such threats as well as protecting IIoT systems. In this study, we 

develop and evaluate a well-optimized intrusion detection system (IDS) based on deep learning (DL) and machine 

learning (ML) techniques to enhance IIoT security. Leveraging the Edge-IIoTset dataset, specifically designed for 

IIoT cybersecurity evaluations, we focus on detecting and mitigating 14 distinct attack types targeting IIoT and 

IoT protocols. These attacks are categorized into five threat groups: information collection, malware, DDoS, man-

in-the-middle attacks, and injection attacks. We conducted experiments using machine learning algorithms (k-

nearest neighbors, decision tree) and a neural network on the KNIME platform, achieving a remarkable 100% 

accuracy with the decision tree model. This high accuracy demonstrates the effectiveness of our approach in 

protecting industrial IoT networks. 

Keywords: IIoT; Cybersecurity; Intrusion Detection System; Machine Learning; KNIME; Deep Learning. 

1.0 INTRODUCTION  

 Living in the era of AI and information collection technologies, the Internet of Things (IoT) has become an 

indispensable part of our daily lives, impacting various sectors including residential, industrial, smart cities, 

healthcare, and beyond [1]. According to the IoT Analytics report, the number of connected IoT devices reached 

14.4 billion in 2022, and it is projected to exceed 27 billion by 2025 [2]. The IoT ecosystem encompasses networks, 

devices, and physical objects interconnected online, interacting with the environment both internally and 

externally. This connectivity facilitates data collection and analysis through wireless communication, driving 

applications in home automation, smart energy, industrial automation, and environmental monitoring [3].  

Applications of the Industrial Internet of Things (IIoT) bridge the gap between physical and informational 

technology with the goal of improving productivity and efficiency in industrial processes. But as IPv4 to IPv6 

protocols have made it easier to link things to the Internet of Things, worries about network security have grown 

[4]. IIoT devices are vulnerable to cyberattacks that jeopardize the confidentiality, integrity, and availability of 

data because of their constrained power, storage, and computational capabilities [5].  

Intrusion detection systems (IDS) are essential for keeping an eye on and stopping illegal network activity in order 

to reduce these dangers. IDS systems can be divided into two categories: host-based (HIDS) and network-based 

(NIDS), each of which performs particular monitoring tasks [6]. Intelligent threat detection systems (IDS) that can 

precisely identify and categorize cyber threats in real-time have been made possible by recent developments in 

machine learning (ML) and deep learning (DL) [7].  

This study focuses on enhancing IIoT security by developing and evaluating an optimized IDS leveraging ML and 

DL techniques. Specifically, we aim to detect and mitigate a diverse range of cyber threats targeting IIoT and IoT 

protocols using advanced algorithms. The experimental framework includes machine learning models such as k-

nearest neighbors (KNN), neural networks (NN), and decision trees (DT), integrated with feature reduction and 

data cleaning techniques to improve classification accuracy. Through comprehensive performance analysis and 

comparisons with prior research, we seek to contribute valuable insights to the field of IIoT security. 
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2.0 LITERATURE REVIEW  

Many studies were investigating the IoT and IDS fields in order to develop the new security mechanism. This 

section covered various IDSs which have lately been put forth; Table 1 lists the IIoT and IoT datasets that are now 

accessible for cyber security. The Edge-IIoTset dataset, which is divided into two categories for DL and ML and 

for a comprehensive cybersecurity dataset related to IIoT and IoT which could be utilized by ML depending on 

IDSs, was utilized by M. A. Ferrag et al. [8]. For classifying 14 attacks with the use of three centralized models, 

they suggest 61 characteristics with a high correlation of 1176 features utilizing RF, DT, KNN, SVM, and DNN: 

Lastly, the best ACC in 2 classes with SVM, RF, DNN, and KNN. 15 classes with the best ACC 94.67 of DNN; 6 

classes with the best ACC 96.01 in additionally DNN. According to Baich et al. [9], the minimum prediction time 

is 0.4 and the ACC is 99.26 when utilizing ML for supporting and validating the suggested state of the art, a 

comparative study between two feature selection methods, and feature intrusion detection for this case in binary 

class and multiclass (5 classes: DOS, normal, U2R, Probe, and R2L). The "DeL-IoT" is a software-defined 

networking (SDN)-based IDS, according to Tsogbaatar et al. [10]. Deep and stack autoencoders were used for 

extracting significant features. The projected model demonstrated greater accuracy in identifying attacks, with an 

F-score range of (99.5-99.9%) and accuracy of (91.04-99.95%). In order to reduce a few information leakages for 

testing data, Yakub Y. et al. [11] proposed applying ML supervised algorithms depending on IDSs to UNSW-

NB15 datasets. PCA could after that be used for performing dimensional reduction. 

Zhang et al. [12] proposed a deep belief network (DBN), a genetic algorithm (GA) built IDS, demonstrating that 

DBN intrusion detection models could detect intrusions more effectively through adaptably increasing the number 

of hidden layers and neurons throughout several iterations. A distributed IDS with a dependable architecture is 

recommended by Prazeres N, Costa R, Santos L, et al. [13] for use in fog computing. They created models (RF 

and NB for IoT-23 and LR and DT for MQTT-IoT-IDS2020) using IoT-23 and MQTT-IoT-IDS2020 datasets, 

which they then contrasted with three IoT-flow IDS architectures for evaluating the terms precision, recall, and 

F1-score. Ge et al. [14] proposed a DL approach for identifying IoT cyber risks that uses feed-forward networks 

to distinguish between various intrusions. This made use of a feed-forward neural network model (FNN) with 

layering that uses sampling-truncated normalization and initialized randomized weights. Milon Islam M., Hasan 

M., Ishrak Islam Zarif M., et al. [15] used three ML algorithms (LR, SVM, DT, RF), also DL algorithms including 

ANN, for finding the best performance in terms of precision, accuracy, F1-score, recall, and the area under the 

receiver operating characteristic curve (ROC curve). The best accuracy was found to be 99.4% for RF, DT, and 

ANN. 

Using two datasets (Bot-IoT and CSE-CIC-IDS2018), Maglaras L, Ferrag M, Moschoyiannis S, et al. [16] 

proposed analyzing seven DL models (deep neural networks (DNN)s, recurrent neural networks (RNNs), deep 

belief networks, restricted Boltzmann machines, deep Boltzmann machines, convolutional neural networks 

(CNNs), and deep autoencoders) for each model for performing multiclass and binary classification and used these 

datasets for performing best accuracy, false alarm, and detected rate through assessing such approaches' efficiency. 

Both DNNs and RNNs get the highest accuracy in CSE-CIC-IDS2018 dataset; the CNN achieves an accuracy of 

97.376% in the case when there are 100 hidden nodes and a learning rate of 0.5. Deep auto-encoders achieve a 

greater accuracy of 98.394% in the case when there are 100 hidden nodes and the learning rate is 0.5, according 

to the accuracy as well as training time regarding generative and unsupervised models in Bot-IoT dataset. In this 

paper, Ahmad J., Ullah S., Khan M., et al. [17] suggest a deep convolutional neural network (DCNN) depending 

on the IDS which comprises of three fully connected dense layers and two convolutional layers. Additionally, they 

used IoT20 datasets to carry out the experiment. The suggested model's analytical performance depends on high 

levels of precision, accuracy, recall, and F1-score. 

This model employs the following methods: AdaMax, Adam, and Nadm. Lastly, the study's proposal contrasts 

several sorts of cutting-edge DL and ML approaches. Investigations reveal that the proposed method is more 

precise compared to three ML-based conventional intrusion detection networks. Along with detecting DDoS 

attacks, Aamir et al. [18]  developed a semi-supervised intrusion detection model depending on PCA which made 

use of the subset benchmark dataset with new attack vectors, utilized clustering for labeling the data as well as 

obtaining the classes for distinguishing the attackers for normal traffic, and lastly utilized three ML algorithms 

(SVM, k-NN, and RF) following labeling for obtaining the results with accuracy (92%, 95%, and finally 96.66%). 

Hara et al. [19] suggested an autonomous encoding intrusion detection method depending on semi-supervised 

learning. The 2-class classification was found to be more accurate compared to an intrusion detection model using 

DNN in simulated trials on an NSL-KDD dataset. By Pacheco et al. [20], a ML attack detection system was 

introduced. The model shows good accuracy for IIoT cyber-attack intrusion detection. 

Table 1: Available IoT and IIoT Datasets for Cyber Security 
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Edge-IIoTset 

[8] 

This dataset is brand-new for IoT and IIoT 

cybersecurity applications that use it to test 

ML based IDSs. 

61 
RF, DT, KNN, SVM, 

and DNN 
14 Yes Yes 

NSL-KDD 

[9] 

Which was suggested for addressing some 

of KDD’99 datasets idea, and it can be 

classified in tow categorize binary and 

multiclass classification and machine 

learning and based on intrusion detection 

systems 

41 DT, RF, NB, and SVM 5 Yes No 

N-BaIoT [10] 

This dataset depends on network-based 

detection regarding IoT Botnet 

attacks using deep autoencoders, and it is 

gathered from the port mirror of IoT 

devices. 

115 
Deep ensemble of PNN, 

DAE, SAE 
10 Yes Yes 

UNSW-NB15

[11] 

Is a network intrusion detection, this dataset 

contains raw of networks packets, this 

dataset developed by IXIA tool to extract 

modern, and behavior conducted by ACSC. 

49 
KNN, SVM, QDA and 

NB 
9 Yes No 

NSL-KDD 

[12] 

Which was suggested for addressing some 

of KDD’99 datasets idea, and it can be 

classified in tow categorize binary and 

multiclass classification and machine 

learning and based on intrusion detection 

systems 

41 

FC-ANN, TANN, SA-

DA-SNMS, BPNN and 

GA-DBN 

17 Yes No 

IoT-23 and 

MQTT-IoT-

IDS2020 [13] 

Real dataset not simulated used to produce 

benign traffic and networks attacks that can 

be based on known the botnet. 

23 

RF, NB for IoT-23 and 

LR with LR and DT for 

MQTT-IoT-IDS2020 

2 Yes No 

BoT-IoT[14] 

Is a legitimation and malicious traffic 

datasets that can simulated IoT devices that 

can testbed including attacks and targeted 

of virtual machines with network devices. 

43 
Feed-forward Neural 

Network (FNN) 
10 Yes Yes 

DS2OStraffi 

traces[12], 

[15] 

 

This dataset includes traces that were 

recorded in the DS2OS IoT environment. 

They are considerably distinct from 

traditional network traces because they 

come from the application layer. 

13 
LR, SVM, DT, RF and 

ANN 
7 Yes No 

CSE-CIC-

IDS2018 and 

Bot-IoT[16] 

Seven different attacks, including Brute-

force, Heartbleed, DDoS, DoS, botnets, 

web attacks, and infiltration, are included in 

these datasets. The CIC Flow Meter tool is 

utilized for extracting 80 network flow 

features from the generated network traffic, 

same like it was done with the CICDS2017 

dataset. 

- 

RNN, DNN, deep belief 

networks, restricted 

Boltzmann machines, 

CNNs, deep 

autoencoders, and deep 

Boltzmann machines 

14 Yes Yes 

IoTID20[17] 

These datasets are developed to 

identification cyberattacks for IoT 

networks devices and generated in smart 

home network that can provide normal and 

anomaly networks flow, the advantage of 

this dataset it includes modern 

communicated data on networking 

interference detection and contain binary, 

categories and subcategories of labeled. 

83 

Deep Convolutional 

Neural Network 

(DCNN) 

4 Yes Yes 

CICIDS2017 

[18] 

the dataset contains common, recent, 

benign attacks that closely mimic true real-

world data (PCAPs). It also contains the 

outcomes of CIC-Flow Meter network 

traffic analysis, labeled flows depending 

on the time stamp, source and destination IP 

addresses, source and destination ports, 

protocols, and attacks (CSV files). The 

84 

Clustering to labeled 

classes, kNN, SVM and 

RF 

17 No No 
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Input data 

Results 

definition of extracted characteristics is 

additionally available. 

NSL-KDD   

[19] 

Which was suggested for addressing some 

of KDD’99 datasets idea, and it can be 

classified in tow categorize binary and 

multiclass classification and machine 

learning and based on intrusion detection 

systems 

41 AAE and DNN 17 No No 

 

3.0 METHODOLOGY 

To give a summary of the experimental findings, the suggested method for conducting classification as well 

as detection tasks is presented in this part. With the use of DT, k-NN, and NN algorithms, we conducted two 

experiments: one for the attack label (binary classification), and the other for the attack type. DT has an effective 

core architecture depending on binary classification, which is utilized as the foundation for the suggested approach 

to show how well (DT) models work. We have created the next methods for such three types of models for 

comparing the performance and accuracy of our suggested model: the structure of DL and ML algorithms is 

depicted in Fig. 1.
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Fig. 1: Structure of ML and DL Algorithms 

3.1 Dataset 

The Edge-IIoTset dataset was introduced by Ferrag et al. [20]. A new cybersecurity dataset for IoT and 

IIoT applications, the Edge_IIoT dataset was developed in 2022 with IIoT environments in mind as a realistic 

cyber security dataset. It has 14 different attack types and 62 features. This dataset [20] contains 14 different 

attacks against IIoT and IoT protocols, which are divided into five different threats: information collection, 

malware, DDoS, man-in-the-middle attacks, and injection attacks. 61 of the 1176 features have a substantial link 

with one another. A total of 2,219,201 instances, 1,615,643 of which are regarded as regular, and 603,558 of which 

are regarded as attacks, are reported by Edge_IIoT [20]. The distribution of instances for Edge-IIoTset dataset is 

shown in Fig. 2. We utilized a stratification option to ensure that the percentages were the same across all classes, 

and we kept 80% of the sample for training and used 20% of it for testing. A few features from Edge_IIoT dataset 

were removed throughout pre-processing; however, such features had no impact on the accuracy regarding the 

result. High accuracy depends on two factors: (1) the classes should be equally important; and (2) the dataset 

should be balanced. Depending on such conditions, several preprocessing processes should be carried out. 
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Fig. 2: Distribution of Instance for Edge_IIoT Dataset 

3.2 KNIME 

Users can combine, access, analyze, and visualize data using Konstanz Information Miner, an open-source 

software platform for data integration and data science. With regard to experienced users, its low-code, no-code 

interface provides a sophisticated suite of data science tools [18]. Workflows are built using desktop-based KNIME 

Analytics Platform by developers and analysts [19]. KNIME Server is business software created for process 

automation, group collaboration, management, and deployment. Here are some of the benefits of using KNIME: 

Ease of use: KNIME has a user-friendly interface that makes it easy to get started with data science. Powerful 

features: KNIME offers a wide range of features for data science, including data wrangling, machine learning, and 

data visualization. Open source: KNIME is free to modify and use because it is open-source software. 

Community: KNIME has a large and active community of users and developers who are constantly sharing tips 

and tricks. Here are some of the drawbacks of using KNIME: (1) Learning curve: KNIME has a steep learning 

curve, which can be a challenge for beginners. (2) Complexity: KNIME can be complex software, which can be a 

challenge for some users. (3) Dependency on third-party tools: KNIME relies on several third-party tools, such as 

R and Python, which can be a challenge for some users. Overall, (4) KNIME is a powerful and versatile data 

science platform that is suitable for a wide range of users. Yet, it is of high importance to be aware of the learning 

curve and complexity of the software before you decide to use it. Here are some of the things you can do with 

KNIME: Data wrangling: KNIME can be used to clean, transform, and prepare data for analysis. Machine 

learning: KNIME can be used to build and train machine learning models. Data visualization: KNIME can be used 

to create interactive data visualizations. Deployment: KNIME can be used to deploy data science models and 

workflows. 

3.3 Pre-processing 

A critical stage in creating a ML model is data pre-processing. To ensure that we develop our DL and ML models 

without any problems, we should do a few preparations. Our ML and DL models won't function effectively 

without data pre-processing. There are certain techniques that leverage nodes in the KNIME platform to improve 

accuracy while building a classification model for intrusion detection depending on the combination of k-NN, 

NN, and DT. Internal rules in the original data information are broken, which results in subpar data processing and 

analysis. As a result, it is necessary to clean "dirty data" and turn it into data that meets the standards for data 

quality. The main challenges of data cleaning include missing values, inaccurate data, distortion, and misfits. The 

answer is removing or replacing the current special symbols and use the same constant for filling the missing data. 

We categorize the procedures that are used with pre-processing into two parts depending on the format of the 

datasets [20]. For binary classification pre-processing, filter some features. In the Edge_IIoT dataset, the features 

are considered very important in order not to affect the accuracy of the results in terms of training and testing 

conducted by the trained algorithms. Some features (ip.src_host, frame.time, http.tls_port, ip.dst_host, and 

tcp.payload) were dropped during the pre-processing stage because data is an imbalance with regard to normal 

class and to reduce the bias during training. For multiclass classification, we filter some features from the 

Edge_IIoT dataset, and here we drop the same features as in binary classification, but the difference is that in 

multiclass classification we drop the Attack label feature and still the Attack type feature. String to number: 

through converting strings in a column (or set of columns) to numbers using wildcard selection, all features, and 

exclude (Attack type feature), we are parsing a few options which are utilized on this node in this instance. Missing 

Value Node: this node assists in handling missing values discovered in input table cells. In the case when a double 

missing value is displayed, choose a fixed value for the missing value and enter (0.1) in it. By doing this, you can 
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make all the values almost equal without impacting the accuracy of the results which are displayed, and when the 

mean yields an integer value, The input table's partitioning node is divided into two partitions which are allocated 

20% for testing and 80% for training. Both the two partitions and the split dataset (1,775,360 for training and 

443841 for testing) are accessible at the two output ports. The Min-Max scaler is the final preprocessing step that 

normalizes the input features and variables for this node (aside from the standardization step that adjusts the 

features to have values between 0 and 1). This will transform all features into the range [0, 1], where the minimum 

and maximum values of each feature or variable will be 0 and 1, respectively. Averaging, minmax scaling, and 

standard scaling are some of the methods for normalizing data. In this study, the data were normalized using a 

standard scalar. A standard scalar utilizes the standard normal distribution (SND), thus its mean and variance are 

0 and 1, respectively. We have 41 features following applying one hot encoding; to standardize the feature space, 

we employed a standard scalar. It could be modeled mathematically as Eq 1.  

𝑧 =
𝑥 − 𝜇

𝑠𝑑
 (1) 

Here, 𝑧 denotes the standard feature space regarding 𝑥 input data samples, 𝜇 represent the mean, and 𝑠𝑑 represent 

the standard deviation. The mathematical representation of the mean is Eq. 2.  

𝑧 =
1

𝑁
∑(𝑥)𝑖 

𝑁

𝑖=1

 (2) 

and standard deviation is Eq. 3. 

𝑠𝑑 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 (3) 

Here 𝑥 𝑖 represent the input sample. The preprocessing structure is the same for multiclass and 

binary classification, yet the rule engine node is utilized in a different step of DL algorithm. This node "takes a list 

of user defined rules and attempts to match them to each one of the rows in the input table, if a rule matches its 

outcome value added into a new column and the first matching rule of order to definition determine of outcome". 

The second step is to create a collection of numbers by aggregating numbers to put the column in set, which could 

after that be safely split into the original column content. The name of attacks feature is after that converted to a 

number by being utilized and replaced with the column of attack type to outcome column number.  

For fine-tuning parameters, it is tried for finding the best parameters for algorithms. Practically, the first model 

utilized to find the best accuracy is the k-NN algorithm, where only the numeric column is utilized and the 

Euclidean distance is implemented, and the test data is also forward as the output. The k-Nearest Neighbor (k-NN) 

is configured by standard settings for the column with class labels (Attack_label), and the number of neighbors is 

3. This number is used to classify a new instance, and the weight neighbors for the distance includes the query 

pattern that can be stored for training patterns into classification of the closer neighbors that have greater influence 

on the class. Same options for multiclass classification, just the class labels (Attack_type). Fig. 3 Simple 

architecture of preprocessing for binary and multiclassification. 

 

Fig. 3: Simple Architecture of Binary and Multiclass Classification Utilized K-NN Algorithm 

With regard to NN in binary classification, we utilized a keras input layer with the following options: batch size 

(1500), shape (41), a keras dense layer (3), an input hidden layer with units (64, 128, 256), and the last for the 

output layer. The attack label, which is utilized in Keras Network, is the target feature for the learner employing 

unit (1) and the activation function (sigmoid) for binary classification. The accuracy of the training procedure is 

equivalent to 98.26, as can be seen in Fig. (4a), and the loss rate for the Keras log output is 0.0497 with 15 epochs 

and a batch size of 1184, as shown in Fig. (4b). 
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Fig. (4a): Accuracy for Binary Training 

 
Fig. (4b): Gradient Descent for Binary Training 

For multiclass classification, we used a keras input layer where the options are shape (56) and batch size (512), 

and a keras dense layer (3) for the input hidden layer where units (64, 128, 256) are activated using the activation 

function (ReLU). ReLU function as well as its derivative are monotonic. Any negative input causes the function 

to return (0); any positive input causes it to return the value x. The output therefore has a range from 0 to infinite. 

ReLU is the activation function that NNs employ the most frequently and is the default activation function. The 

target feature the learner wants to learn is (Attack_type), and Figure 5 depicts the architecture of NN preprocessing. 

Eq. (4) describes how to obtain the ReLU value, and Eq. (5) indicates how to find the Softmax value for  output 

layer using unit (15) with activation function (Softmax). ReLU function as well as its derivative are both 

monotonic; if any negative input is given, the function returns (0); if any positive input is given, the function 

returns x. 

𝑅𝑒𝐿𝑈 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 𝑖𝑠: 𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥) (4) 

𝜎(𝑧)⃗⃗  ⃗𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 (5) 

 

Fig. 5: Simple Architecture of Binary and Multiclass Classification Utilized (NN) Algorithm 

The output therefore has a range from 0 to infinite. ReLU is the activation function that NNs employ the most 

frequently and is the default activation function. The keras network learner for training our utilized number of 

neurons equals (56) and the shape is (56) and the conversion is "from number (double)"; the target data column is 

Attack_type; the number of neurons equals (15) and the shape equals (15); the conversion is from collection of 

number (integer) to one-hot tensor; and the target column is aggregated value. The standard loss function is 

categorical, see Fig. (6a) learner monitor for Keras network learner to show the accuracy for the training algorithm 

is equal (92.57); Fig. (6b) loss rate; and the keras log output is for current value percentage (0.23) with (4) epochs 

and (3468) batch size. 
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The general settings of the option for Keras Networks learners the back end is keras (tensor flow) with epochs (4), 

the validation batch size is 512, the training batch size is 512, and the Adam optimizer is utilized with a learning 

rate equal to 0.001. Decision Tree Learner: the target column is Attack_type, the quality measures are the Gini 

index, the Minimum Description Length (MDL) pruning approach (2), the number of records (10,000), and the 

number of threads (12). In Fig. 7, the structure of the DT algorithm is shown. The tree root of the DT can be 

divided into sub-roots for each instance, and each of these roots takes weight. 

 
Fig. (6a): Accuracy for Binary Training 

 

Fig. (6b): Gradient Descent for Binary Training 

 
Fig. 7: Architecture of Multiclass Classification Utilized (DT) Algorithm 

4.0 RESULTS  

 As described before, k-NN, NN, and DT algorithms are implemented. Then, the mean regarding the results is 

taken from the precision as Eq. (4), recall as Eq. (5), F-measure as Eq. (6), and accuracy as Eq. (7) of each 

algorithm. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 (6) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 (7) 

The experiment used the Edge_IIoT dataset for intrusion detection systems using several classifiers and the 

following sampling types: random samples with an 80% training and 20% testing dataset size. 

For binary classification, the first model can be used in our study, the k-NN algorithm from Fig. 8. As can be seen 

from the confusion matrix (TP = 321966), FN = 1163, FP = 6576, and TN = 114136), the correct classification is 

(436102), the wrong classification is (7739), the error rate is (1.74%), Cohen’s kappa (k) is (99.5%), and the 

accuracy is (98.26%). 

 

Fig. 8: Confusion Matrix of (K-NN) Algorithm 

In the second experiment NN, from Fig. 9, we can see the confusion matrix of this model: the results of (TP = 

323212), (FN = 374), (FP = 6445), and (TN = 113810), the correct classification (437022), the wrong classification 

(6819), the error rate (1.54%), Cohen’s kappa (k) (96%), and the accuracy (98.46%). 

 

Fig. 9: Confusion Matrix of (NN) Algorithm 

The final experiment in binary classification DT, from Fig. 10, can be seen from the confusion matrix of this model 

(TP = 323181), (FN = 0), (FP = 0), and (TN = 120660), the correct classification (443841), the wrong classification 

((0)), the error rate (0), Cohen’s kappa (k) (100%), and the accuracy (100%). 
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Fig. 10: Confusion Matrix of DT Algorithm 

Figure 11 shows the contrast between binary classification techniques which could be used and the outcomes from 

classifiers like NN, k-NN, and DT from above. With regard to binary classification, DT had a greater classification 

accuracy of 100%, whilst k-NN had the lowest accuracy of 98.256%. The higher value (100) of the F1-score, 

which displays the total result of the recall and precision ratios, indicates that a model DT is more capable of 

making accurate classifications. 

 

Fig. 11: Comparison Between Three Algorithms for Binary Classification 

The second experiment for the multiclass classification used the same models with the same sampling types of 

random samples with 80% training data size and 20% testing dataset size. We utilized three algorithms: k-NN, 

NN, and DT. The k-NN algorithm result of the confusion matrix can be seen in Fig. 12. For this experiment, the 

high accuracy of the relation between the actual and the prediction can be seen on the DDoS-UDP (100%) and on 

the MITM (100%). The lowest accuracy of the relation can be seen on the XSS, where the percentage of accuracy 

is 54.37%. 

K-NN NN DT

Accuracy 98,3 98,3 100

Recall 94,6 94,6 100

Precision 99 99 100

F1-measure 96,7 96,7 100

98,3 98,3
100

94,6 94,6

100
99 99

100

96,7 96,7

100

90
92
94
96
98

100
102
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Fig. 12: Confusion Matrix of (K-NN) Algorithm 

Class statistics for this model can be seen on Fig. 13, as these figures show class statistics and overall statistics of 

the k-NN algorithm that found the percentage of accuracy (95.11%) for this model, the error rate (4.89%), Cohen’s 

kappa (k) (89.3%), correctly classified (422144), and incorrectly classified (21697). 

 
Fig. 13: Class and Overall Statistics of (K-NN) Algorithm 

The NN algorithm is the second experiment. On this experiment, using the rule engine node to convert the classes 

that contain normal and the names of attacks to be read by the Keras learner node as a number, this is a rule that 

can be utilized on this node: 

$Attack_type$ = "Normal" => 0 

$Attack_type$ = "MITM" => 1 

$Attack_type$ = "Uploading" => 2 

$Attack_type$ = "Ransomware" => 3 

$Attack_type$ = "SQL_injection" => 4 



150 

$Attack_type$ = "DDoS_HTTP" => 5 

$Attack_type$ = "DDoS_TCP" => 6 

$Attack_type$ = "Password" => 7 

$Attack_type$ = "Port_Scanning" => 8 

$Attack_type$ = "Vulnerability_scanner"=> 9 

$Attack_type$ = "Backdoor" =>10 

$Attack_type$ = "XSS" => 11 

$Attack_type$ = "Fingerprinting" =>12 

$Attack_type$ = "DDoS_UDP" =>13 

$Attack_type$ = "DDoS_ICMP" => 14 

The result of the confusion matrix and the accuracy statistics for NN can be seen in Fig. 14. For this experiment, 

the high (TP) of the relation between actual and prediction can be seen on the number (0=normal) (322297), which 

means a high percentage of accuracy. The lowest (TP) of the relation between actual and prediction can be seen 

on the number (12=fingerprinting attack) (20), which means the lowest accuracy of this relation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Confusion Matrix and Accuracy Statistics Results for (NN) Model 

The final experiment for the multiclass classification utilized DT algorithms. The result of confusion matrix can 

be seen in Fig. 15. For this experiment, the high accuracy of the relation between the actual and the prediction 

can be seen on the backdoor, where DDoS_ICMP, DDoS_TCP, DDoS_UDP, and MITM equal (100%), while 
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the lowest accuracy of the relation can be seen on DDoS_HTTP, where the percentage of accuracy is 83.64%.

 

Fig. 15: Confusion Matrix of (DT) Algorithm 

Class statistics for this model can be seen in Fig. 16. This figure shows class statistics and overall statistics of the 

DT algorithm that found the percentage of accuracy (98.46%) for this model, the error rate (1.54%), Cohen’s kappa 

(k) (96.7%), correctly classified (437015), and incorrectly classified (6826). 

 

Fig. 16: Class and Overall Statistics of (K-NN) Algorithm. 

As shown in Fig. 17, the results of classifiers, such as NN, k-NN, and DT is that while DT had a higher 

classification accuracy of (98.46), the F1-score, which presents the combined result of precision and recall ratios, 

had a higher value of (100), which represents the better classification capability of a model DT for multiclass 

classification. 
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Fig. 17: Comparison Between Three Algorithms for Multiclass Classification 

5.0 CONCLUSION  

This study uses a realistic network dataset traffic to assess the dependability as well as effectiveness of a DT model 

of binary classification for network intrusion detection, ensuring the accuracy of the suggested models. Edge-

IIoTtest dataset, which made use of the KNIME platform, was used to test our models (NN, k-NN, and DT); DT 

and k-NN for ML, and NN for DL for binary and multiclass classification. DT model's accuracy has increased as 

a result of the combination of the significant strengths of each model when the models were evaluated in terms of 

accuracy situations. With regard to multiclass and binary classification, the results were compared depending on 

recall, accuracy, F1-measure, and precision. With the two experiments (multiclass and binary), we achieved the 

maximum accuracy in DT model for binary classification (100%), and the highest accuracy in the DT model for 

multiclass (98.46%), with the highest precision, recall, and F1-measure of such percentages (100%). For 

enhancing IDS, the proposed DT architecture model is ideal for the system administrator as well as the networking 

designer or industry. Yet, this study investigates new datasets for testing and training and simultaneously applies 

DL and ML to the dataset. However, more study is required to look into attack behavior patterns and use the 

information gathered to improve prevention and prediction models. In order to improve accuracy and 

efficiency with new models, this work might be enhanced in the future by utilizing various optimization as well 

as feature selection approaches, using the model in real-time to categories, and capturing additional network 

traffic. Implementing a classification of incoming traffic as anomalous or normal is the goal. Finally, we compared 

the high accuracy of three previous studies with our study to obtain the highest accuracy for binary and multiclass 

classification models from the Table. 2. Our study obtained high accuracy (100%) for binary and high accuracy 

(98.46%) in multiclass classification for the DT model. 

Table 2: Comparison Between Studies Depending on High Accuracy. 

Studies Year High Accuracy of Classification 

Binary (%) Algorithm Multiclass (%) Algorithm 

[16] 2022 99.99 DNN 

k-NN 

SVM 

RF 

94.67 DNN 

[21] 2022 97.27 Poly BR 

Poly PCA 

- - 

[22] 2023 99 MEC-based architecture - - 

Our study 2023 100 DT 98.46 DT 
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