RESPONSE OF MICROALGAE IN A CHANGING CLIMATE AND ENVIRONMENT

Wai-Kuan Yong, Yong-Hao Tan, Sze-Wan Poong, and Phaik-Eem Lim*

Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Corresponding author: phaikeem@um.edu.my
Received: 23 Nov 2016. Revised: 28 Nov 2016 Accepted: 28 November 2016

Abstract Microalgae are ecologically important as a major primary productivity driver via photosynthetic carbon fixation. As the primary producers and food sources for higher trophic organisms, microalgae play a crucial role in maintaining the equilibrium of food webs in the aquatic ecosystem. The current shifts of global climate due to anthropogenic release of greenhouse gases have been reported to pose numerous impacts on microalgae. Extreme fluctuations in atmospheric temperature, light intensity, ultraviolet (UV) radiations, carbon dioxide (CO$_2$) levels, and salinity can lead to alterations in growth, disruption of homeostasis, photosynthetic rate, respiration, enzymatic activity, protection to oxidative damage, and trophic transfer in microalgae. Various studies on microalgal responses to these environmental changes are ongoing to provide a deeper insight into the relationship between microalgal growth, metabolic adjustment and community structure. In this review the authors aim to highlight the recent findings on the responses of microalgae in the changing environment.

INTRODUCTION

Microalgae are photosynthetic organisms inhabiting a highly diverse range of habitats from sea ice, sea waters, snow, inland waters to soil. Besides being primary producers in food chains, microalgae are sources of useful biomaterials for biotechnological applications and commercial interests (Milledge, 2011). Microalgal growth is highly dependent on the environmental conditions. Factors such as temperature, pH, UV radiation, light and nutrient availability can adversely affect the growth, physiology, photosynthetic rate, metabolic rate and biochemical composition of the microalgae. In order to protect and adapt against environmental perturbations and abiotic stresses, microalgae employ a series of responses by altering levels of primary metabolites, secondary metabolites, photosynthetic intermediates, ion fluxes and osmolytes (Arbona et al., 2013).

Human activities emitted greenhouse gases since the Industrial Revolution. As a result, heat from the sun is trapped in the form of
infrared rays, causing elevated temperatures across the globe (Gao et al., 2012). This inflicts a number of scenarios in the ocean. Rising temperature decreases the density of the ocean surface. As a result, stratification over the water column are enhanced, thereby reducing the depth of the upper mixing layer (UML). Reduction of UML depth brings more photosynthetic marine microalgae closer to the surface of the sea, a situation where more microalgae could be subjected to stresses of drastic light and ultraviolet (UV) fluctuations. In the open ocean, shallowing of UML results in marine microalgae receiving less nutrients from the deeper ocean (Steinacher et al., 2009).

Anthropogenic release of carbon dioxide (CO₂) increases the dissociation of dissolved CO₂ to hydrogen and bicarbonate ions in the seawater (Dickson, 2010). In the absence of mitigation efforts, atmospheric pCO₂ is expected to rise up to 1000 μatm in 100 years, leading to a further drop in oceanic pH of 0.20 – 0.32 in the same period of time (Pachauri et al., 2014), a rate that is unprecedented over Earth’s geological timescale (Zeebe et al., 2016). Other than the increase of acidity in the ocean, excessive hydrogen ions causes decrease of carbonate ions and saturation rate of calcium carbonate (Doney et al., 2009), which could threaten the calcifying microalgae (Meyer & Riebesell, 2015).

Only 2.5% of the freely available water on the Earth’s surface are from freshwater ecosystems, of which 68.7% is in frozen form, 29.9% is groundwater and only 0.26% of liquid freshwater ecosystems is in the form of rivers, lakes and reservoirs. Naturally the turnover time and flux of surface freshwaters is more rapid compared to the ocean, but the flux in freshwater is even more accelerated now due to climate change, and various industrial and anthropogenic activities (Carpenter et al., 2011). Some of the impacts of climate change on freshwater ecosystems include rising temperature, irradiance, water body stratification and salinity (Wilby et al., 2010). These changes are also predicted to increase precipitation and nutrient upcycling of the freshwaters, hence affecting habitat availability, growth and species distribution of aquatic organisms, especially primary producers such as microalgae (Prowse et al., 2006).

This review includes some of the recent research on the impacts of changing environmental drivers (irradiance, temperature, CO₂, salinity) to microalgae and some of the interactive effects of these drivers will be discussed.

Irradiance

As discussed above, microalgae in the euphotic zone are subjected to high fluctuations of light. Stratification of the ocean surface due to climate change further exacerbates the light stress on microalgae. Perturbations in light intensity can be detrimental to photosynthesis and consequently affects the productivity of the microalgal community, as summarized in Table 1. Recent reports found that microalgae could alter their chlorophyll content, phycobiliprotein content, photosystem ratio, photosystem antenna size, biomolecule ratio and nutrient uptake as the light intensity increased (Norici et al., 2011; Ma et al., 2015; Meneghesso et al., 2016). To mitigate the excessive energy of high light, microalgae undergo non-photochemical quenching (NPQ) via cyclic electron flow in PSI, Mehler reaction, carbon concentrating mechanisms (CCM), photorespiration, carbon excretion (Lepetit et al., 2012), and de-epoxidation of xanthophyll pigments (violaxanthin, zeaxanthin and diadinoxanthin) (Goss & Jakob, 2010; Katayama & Taguchi, 2013; Meneghesso et al., 2016).
Table 1: Summary of various reports on light intensity and ultraviolet radiation on microalgae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Manipulated factors</th>
<th>Effects</th>
<th>Reference</th>
</tr>
</thead>
</table>
| *Nostoc* sphaeroides Kützing | PAR: 10, 30, 60, 90 and 120 µmol photon m⁻²s⁻¹ | Phycocyanin and allophycocyanin: ↑ with light intensity
Phycoerythrin: ↓ with light intensity | Ma et al. (2015) |
| *Skeletonema* marinoi Sarno & Zingone | PAR: 25 (low light, LL), 250 (high light, HL) µmol photon m⁻²s⁻¹ | Specific growth rate, cell volume, ashes, P (phosphorus) cell quota, N (nitrogen) cell quota, total protein, chlorophyll (Chl) a, Chl c₁ + c₂, total Chl, dark respiration rate, and PEPck activity: ↓ significantly in HL
Estimated net primary production, light compensation point, Eₜ↓: ↑ significantly in HL
Contribution to carbon pools (% protein: lipids: carbohydrates): LL cells (66.6%: 5.4%: 10.1%);
HL cells (40.8%: 37.6%: 4.6%) | Norici et al. (2011) |
| Ice algal community | PAR: 520 → 1145 µmol photon m⁻²s⁻¹ | DES (de-epoxidation state) and NPQ: ↑ in high light | Katayama & Taguchi (2013) |
| *Pseudo-nitzschia* multistriata (Takano) Takano | PAR kinetics:
- 5h spike to 100 – 650 µmol photon m⁻²s⁻¹ (diel-cycle related)
- 3h spike/2h spike to 100 – 650 µmol photon m⁻²s⁻¹ (mixing – related) | Vx Chl a⁻¹ (violaxanthin per chlorophyll), Zx Chl a⁻¹ (zeaxanthin per chlorophyll), Dt Chl a⁻¹ (diatoxanthin per chlorophyll), β-carotene Chl a⁻¹ (beta-carotene per chlorophyll), NPQ: ↑ increasing light intensity in diel cycle-related.
In mixing related light velocity is too fast to initiate high operation compared to the diel-cycle related, except NPQ ↑ with Dt Chl a⁻¹ | Giovagnetti et al. (2014) |
| *Emiliania* huxleyi (Lohmann) W.W.Hay & H.P.Mohler | 50 µmol photon m⁻²s⁻¹ (low light, LL), 198 µmol photon m⁻²s⁻¹ (UVA), 0.0885 Wm⁻² (UVB) (high light, HL) | DMSP concentration: ↑ LL → HL | Darroch et al. (2015) |
Table 1: Summary of various reports on light intensity and ultraviolet radiation on microalgae. (con’t)

<table>
<thead>
<tr>
<th>Microalgae</th>
<th>Treatment and Experimental Conditions</th>
<th>Key Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emiliania huxleyi (Lohmann)</td>
<td>4-day acclimation in 18 µmol photon m(^{-2}) s(^{-1}) (LL) in green/blue spectral light, and white HL (425 µmol photon m(^{-2}) s(^{-1}))</td>
<td>Chl c(_2), Chl c(_3), F: chl a ratio: ↑ in downwelling. Garrido et al. (2016)</td>
</tr>
<tr>
<td>W.W.Hay & H.P.Mohler</td>
<td>Upwelling simulation - green LL → white HL (coastal) - blue LL → white HL (oceanic)</td>
<td>MV chl c(_2); chl a, diadinoxanthin + diatoxanthin (Dt+Dd); chl a, XC pigments: ↑ during upwelling</td>
</tr>
<tr>
<td></td>
<td>Downwelling simulation white HL → green LL(coastal) white HL → green LL(oceanic)</td>
<td>F(fucoxanthin): chl a ratio: ↓ downwelling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HF(19'-hexanoyloxyfucoxanthin): dominant in coastal upwelling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DES (de-epoxidation state): ↑ during upwelling, ↓ rapidly during downwelling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F(_v)/F(_m) (effective quantum yield): 0.6 → 0.4 (upwelling), 0.4 → 0.6 (downwelling)</td>
</tr>
<tr>
<td>Nannochloropsis gaditana</td>
<td>PAR: 10 (LL), 100 (ML) and 1000 (HL) µmol photon m(^{-2}) s(^{-1})</td>
<td>Chl a, F(_v)/F(_m), PS I content per cell, PSII/PSI ratio, PSII and PSI antenna size: significantly ↓ LL → HL</td>
</tr>
<tr>
<td>L.M.Lubián</td>
<td>Alterations of thylakoid membrane and highly damaged cells in HL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carotenoids: ↑ in violaxanthin in HL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XC pools: ↑XC pigments (antheraxanthin, zeaxanthin) LL → ML, remains in HL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPQ: HL cells activate NPQ > 700 µmol photon m(^{-2}) s(^{-1})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyclic electron flow: ↑ ML → HL</td>
<td></td>
</tr>
<tr>
<td>Skeletonema costatum</td>
<td>UVB: 17.3 kJ m(^{-2})</td>
<td>Average growth rate, Chl a and c: significantly ↓ in UVB</td>
</tr>
<tr>
<td>(Greville) Cleve</td>
<td>Amino acid concentration: alanine, aspartate, glutamine, arginine, glycine, histidine, isoleucine, leucine, lysine, phenylalanine, serine, threonine, tyrosine, and valine significantly ↓ in UVB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fatty acid concentration: significantly ↓ in UVB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C14:0 (myristic acid), C16:0 (palmitic acid), ΣSFA (total saturated fatty acids), C16:1ω7 (palmitoleic acid), ΣMUFA (total monounsaturated fatty acids), C18:2ω6 cis (linoleic acid), C20:5ω3 (eicosapentaenoic acid), ω3/ω6 ratio (omega-3/omega-6), ΣPUFA (total polyunsaturated fatty acids)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meneghesso et al. (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nahon et al. (2010)</td>
</tr>
</tbody>
</table>
Table 1: Summary of various reports on light intensity and ultraviolet radiation on microalgae. (con’t)

<table>
<thead>
<tr>
<th>Microalgae</th>
<th>Conditions</th>
<th>Effects</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorella vulgaris</td>
<td>PAR+UVA (8.54 Wm$^{-2}$) + UVB(1.17 Wm$^{-2}$), PAR+UVA and PAR.</td>
<td>Growth: significantly ↓ PAR+UVA+UVB FA: MUFA and PUFA significantly ↑ in PAR+UVA/PAR+UVA+UVB</td>
<td>Wong et al. (2011)</td>
</tr>
<tr>
<td>Beijerinck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorella vulgaris</td>
<td>UVB: 3 consecutive days, 60 minutes, 16920 Jm$^{-2}$ each day.</td>
<td>Production of total phenols: ↑ significantly in UVB</td>
<td>Copia et al. (2012)</td>
</tr>
<tr>
<td>Beijerinck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phaeocystis spp.</td>
<td>12.1 Wm$^{-2}$, 72 hrs incubation</td>
<td>% of FA production: SFA and MUFA ↑; PUFA ↓ in UVB</td>
<td>Ha et al. (2014)</td>
</tr>
<tr>
<td>Cryptomonas spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinophyceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thalassiosira</td>
<td>UV depleted (PAR only), ambient UV and PAR and enhanced UV and PAR (UV+)</td>
<td>Cell diameters: significantly ↑ of D. tertiolecta (UV+ > UV > PAR); significantly ↓ of T. weissflogii (UV+ > UV > PAR) C:N (carbon-to-nitrogen ratio), C16:0, C16:1n–7 and % total lipids: ↓ significantly PAR→UV/UV+ (Thalassiosira pseudonana and Thalassiosira weissflogii)</td>
<td>Durif et al. (2015)</td>
</tr>
<tr>
<td>weissflogii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Grunow)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.Fryxell & Hasle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunaliella</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tertialecta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butcher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thalassiosira</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pseudonana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hasle & Heimdal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fatty acid in diatoms: UV+ ↑ C20:5ω3, C18:1ω9 (oleic acid), C18:0 (stearic acid), C18:2ω6 cis , C20:4ω6 (arachidonic acid), C22:5ω3 all-cis-7,10,13,16,19-docosapentaenoic acid, and C22:6ω3; UV+ ↓ C16:0 and C16:1ω7</td>
<td></td>
</tr>
</tbody>
</table>
Apart from high incidents of light on the water surface, microalgae also experience drastic variations of light intensity due to vertical mixing or diel cycles (Ryther & Menzel, 1959). Fucoxanthin pigments, chlorophyll content, xanthophyll pools and effective quantum yield \((F_{v}/F_{m})\) were actively regulated by marine microalgae to adapt to changes in light intensity during downwelling and upwelling conditions and variations in diel cycle/mixing-cycle (Giovagnetti et al., 2014; Garrido et al., 2016). Yang et al. (2015) reported that species distribution in a freshwater community varied across the water column with decreasing light intensity.

Ultraviolet radiations [UV-A (320–400 nm); UV-B (280–320nm); UVC (200– 280 nm) (Wong & Parisi, 1999)] may inflict damage on intracellular biomolecules such as nucleic acids, membranes, pigments and proteins such as ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and photosystem (PS) II (Hughes, 2006). Damage to these biomolecules releases reactive oxygen species (ROS) which are scavenged by detoxifying enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX) (Janknegt et al., 2009), and organic sulphur such as dimethylsulfiniopropionate (DMSP) and dimethylsulfide (DMS) (Darroch et al., 2015). In response to UVR, fatty acid contents were found to be altered in a species-specific manner (Nahon et al., 2010; Wong et al., 2011; Ha et al., 2014; Durif et al., 2015).

Temperature

Temperature is a key environmental factor that strongly regulates the growth of photosynthetic organisms. Higher temperature in the environment impairs photosynthetic rate, affects viability of PSII and fluidity of the thylakoid membrane, lowers biomass production (Zidarova & Pouneva, 2006) and alters biochemical profiles of microalgae (Teoh et al., 2005). Generally, growth and biochemical profiles of microalgae were different at optimal, sub-optimal and stressful growth temperatures. Microalgae of the same taxonomic group but originating from different latitudes or climatic regions may respond differently to temperature stress in terms of their specific growth rate, lipid and fatty acid profiles. For example, Antarctic and temperate *Chlamydomonas* strains showed an increase in saturated fatty acids (SFA) with increasing temperature whereas for tropical strain, unsaturated fatty acids (UFA) increased and SFA decreased (Teoh et al., 2013). Lipid composition and membrane fluidity of microalgae cells were reported to be temperature-dependent (Lukeš et al., 2014). A trend of desaturation was observed in the fatty acid profile of Antarctic *Chlamydomonas* sp. ICE-L at 15°C in which the expression level of mRNAs for fatty acid desaturases changed following elevation of temperature (An et al., 2013). Thermal fluctuations also affect fluidity and functioning of PSII on the thylakoid membrane, which subsequently influence photosynthetic rate and aggravate photoinhibition (Smirnoff, 1995).

Some microalgae species are able to thrive in various environments such as extreme cold and harsh heat of hot springs in spite of a reduced growth rate and changes in physiological and biochemical profiles. Based on their optimal growth temperature, species can be briefly categorised as (1) psychrophiles growing at <15°C, (2) thermophiles growing at >50 °C, (3) mesophiles growing at intermediate temperatures, and (4) hyperthermophiles which thrive at >80°C (Varshney et al., 2015). *Chlorella* sp. isolated from the Arctic glacier melt water was reported to be a psychrotolerant due to its adaptability to
grow from 3 - 27°C. Photosynthetic parameters showed that the strain was more tolerant to heat than cold stress (Cao et al., 2016). Adaptations of polar microalgae to extreme cold conditions include utilizing mechanisms such as membrane fluidity, enzyme kinetics, compatible solutes and cryoprotectants, extracellular compounds, light acclimation, antioxidants and dark adaptation (Lyon & Mock, 2014). The eurythermal adaptability was crucial for the species to survive significant diurnal and seasonal temperature fluctuations in extreme environment (Cao et al., 2016).

Similar mechanisms were adopted by microalgae to acclimatize to heat stress. Acclimation of snow alga *Chlamydomonas* cf. *nivalis* to a wide range of temperatures might be due to the structural flexibility in the D1 protein of thylakoid membrane which consists largely of negatively charged phosphatidylglycerol (Lukeš et al., 2014). Interspecies variability for sensitivity to heat was also observed in *Chlorella* species where the Antarctic strain showed higher expression of HSP70B heat shock proteins (Chankova et al., 2013). The overall effects in heat stress can lead to reduced biomass production, reaction rates and kinetic properties of enzymes (Zidarova & Pouneva, 2006). A hypothetical model proposed that the heat shock response in *Chlamydomonas* is a highly complex network which includes protein homeostasis of enzymes, molecular chaperones and transcripts, photosynthesis, ROS scavengers, membrane lipid remodelling and cell cycle (Schroda et al., 2015).

Table 2 summarizes how microalgae respond to temperature stress.

Table 2: Summary of various reports on temperature stress on microalgae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Origin</th>
<th>Manipulated factors</th>
<th>Effects</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorella sp.</td>
<td>Polar (Arctic)</td>
<td>3-27°C</td>
<td>Fv/Fm increased with increasing temperature with highest value at 21 and 27°C. Extracellular soluble sugar ↑. Protein ↓. Total lipid ↓.</td>
<td>Cao et al., (2015)</td>
</tr>
<tr>
<td>Chlamydomonas sp. ICE-L</td>
<td>Polar (Antarctic)</td>
<td>-20-15°C</td>
<td>mRNA expression levels of fatty acid desaturases changed. SFA ↑, PUFA ↓ at 15°C.</td>
<td>An et al., (2013)</td>
</tr>
</tbody>
</table>
Table 2: Summary of various reports on temperature stress on microalgae. (con’t)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Location</th>
<th>Temperature</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlamydomonas sp.</td>
<td>Antarctic</td>
<td>4-30°C</td>
<td>Antarctic strains survived at temperatures much higher than their ambient regime, though specific growth rate of Antarctic Navicula ↓. Antarctic and temperature strains grew optimally at temperature above their ambient temperatures. Tropical strains were already growing at their upper temperature limits. Chlorella strains were eurythermal, with a large range of 4-38°C.</td>
</tr>
<tr>
<td>Chlorella vulgaris Beijerinck</td>
<td>Antarctic</td>
<td>4-32°C</td>
<td>Antarctic and temperature strains grew optimally at temperature above their ambient temperatures. Tropical strains were already growing at their upper temperature limits. Chlorella strains were eurythermal, with a large range of 4-38°C.</td>
</tr>
<tr>
<td>Navicula glaciei Van Heurck</td>
<td>Antarctic</td>
<td>13-38°C</td>
<td>Antarctic and temperature strains grew optimally at temperature above their ambient temperatures. Tropical strains were already growing at their upper temperature limits. Chlorella strains were eurythermal, with a large range of 4-38°C.</td>
</tr>
<tr>
<td>Chlamydomonas augustae Skuja Beijerinck</td>
<td>Temperate</td>
<td></td>
<td>Antarctic and temperature strains grew optimally at temperature above their ambient temperatures. Tropical strains were already growing at their upper temperature limits. Chlorella strains were eurythermal, with a large range of 4-38°C.</td>
</tr>
<tr>
<td>Chlorella vulgaris Beijerinck</td>
<td>Temperate</td>
<td></td>
<td>Antarctic and temperature strains grew optimally at temperature above their ambient temperatures. Tropical strains were already growing at their upper temperature limits. Chlorella strains were eurythermal, with a large range of 4-38°C.</td>
</tr>
<tr>
<td>Amphiprora sp.</td>
<td>Tropical</td>
<td></td>
<td>Antarctic and temperature strains grew optimally at temperature above their ambient temperatures. Tropical strains were already growing at their upper temperature limits. Chlorella strains were eurythermal, with a large range of 4-38°C.</td>
</tr>
<tr>
<td>Chlamydomonas reinhardtii P.A.Dangeard</td>
<td>Tropical</td>
<td>25, 42°C</td>
<td>Polyunsaturated membrane lipids ↓, polyunsaturated TAGs and DAGs ↑.</td>
</tr>
<tr>
<td>Heterosigma akashiwo (Y.Hada) Y.Hada ex Y.Hara & M.Chihara</td>
<td>20, 35, 37, 40, 50°C for 1 hr</td>
<td>Normal growth at 35°C, programmed cell death was observed at 37-40°C. Heat stress at 50°C caused encystment and necrosis.</td>
<td></td>
</tr>
<tr>
<td>Alexandrium tamarense (Lebour) Balech</td>
<td>Temperate</td>
<td>0-37°C</td>
<td>Survival rate ↓ at high temperature. Temperate strain was able to survive at 15-30°C for 1 h. Tropical strain could tolerate a range of 15-30°C. Induction of Hsp70 occurred more quickly in the temperate strain compared to the tropical one, hence better survival of the temperate strain.</td>
</tr>
<tr>
<td></td>
<td>Tropical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teoh et al. (2013)
Légeret et al. (2016)
Dingman & Lawrence (2012)
Kobiyama et al. (2010)
Carbon Dioxide

To undergo oxygenic photosynthesis in low atmospheric CO$_2$ levels, marine microalgae had evolved carbon concentrating mechanisms (CCM) to accumulate CO$_2$ in a RuBisCO-containing intracellular compartment since 60 million years ago (Raven et al., 2012). With increasing levels of oceanic CO$_2$ level, CCM are expected to be downregulated as more carbon is readily available. This might result in energy saving, despite more carbon fixation and higher respiration rate (Wu et al., 2010). To date, studies have shown that the increase of CO$_2$ levels benefit marine microalgae by improving growth rates, photosynthetic carbon fixation, nitrogen fixation and photoprotection (NPQ) (Levitan et al., 2007; Wu et al., 2010; Sun et al., 2011; Torstensson et al., 2012; Eichner et al., 2014).

For the calcifying microalgae species, such as the model haptophytes *Emiliania huxleyi*, *Calcidiscus leptoporus*, and *Gephyrocapsa oceanica*, increasing seawater acidity reduces calcification (length and weight of the coccoliths, particulate inorganic carbon (PIC) production). While haptophytes were found to be flexibly regulating carbon assimilation in different pH levels (Kottmeier et al., 2014), the organic carbon fixation rate varied among species (Barcelos et al., 2010; Langer & Bode, 2011; Zhang et al., 2015). This could be due to the increase of protons accumulated during ocean acidification (Suffrian et al., 2011) or slower rates of photosynthetic electron transfer compare to carbon fixation (Barcelos E Ramos et al., 2010).

Reports on the response of individual species might vary in *in situ* ecological studies. Result of a community study suggested that when marine microalgae were cultured in a mesocosm, high CO$_2$ elevated the abundance of picoeukaryotes (Newbold et al., 2012). On the other hand, a 12-years *in situ* study on the mean weight of *E. huxleyi* coccolith suggested that rising global atmospheric CO$_2$ contributed to the decrease of coccolithophore calcification (Meier et al., 2014).

Elevated CO$_2$ level was also reported to alter the fatty acid composition and increase phenolic acid content of marine microalgae. This would directly affect its quality as food source across the trophic levels (Rossoll et al., 2012; Jin et al., 2015). More worrying is the fact that harmful algae are expected to release more neurotoxin under conditions of increased CO$_2$ levels (Sun et al., 2011). Engel (2002) hypothesized that the high CO$_2$ could result in high exudation of transparent exopolymer particles (TEP) into the ocean. As marine microalgae interact closely in the phycosphere, the release of biomolecules allows us to infer the chemical interaction between each species of an algal community in a high-CO$_2$ aquatic environment. Table 3 is a summary of the responses of microalgae to elevating CO$_2$ levels.

<table>
<thead>
<tr>
<th>Symbiodinium spp.</th>
<th>Temperate</th>
<th>Tropical</th>
<th>25, 29, 30, 31ºC</th>
<th>ROS production, antioxidant catalase and superoxide dismutase activity varied among the seven Symbiodinium types at elevated temperatures.</th>
<th>McGinty et al. (2012)</th>
</tr>
</thead>
</table>

Table 3
Table 3: Summary of various reports on pCO$_2$ manipulation on microalgae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Manipulated factors</th>
<th>Effects</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichodesmium sp. (IMS101)</td>
<td>pCO$_2$: 250 (low), 400 (ambient), 900 µatm (high)</td>
<td>Growth rate, biomass, nitrogen fixation, C:N ratio, filament length: significantly ↑ high CO$_2$ E$_k$: significantly ↓ in high CO$_2$</td>
<td>Levitan et al. (2007)</td>
</tr>
<tr>
<td>Phaeodactylum tricornutum Bohlin</td>
<td>pCO$_2$: 388µatm (ambient) and 1000µatm (high) LC: low-CO$_2$ grown cells HC: high-CO$_2$ grown cells</td>
<td>Specific growth rate: ↑ in HC than LC. Photosynthetic carbon fixation rate: significant ↑ 11% at HC K_m, dark respiration, daily net production, photochemical activity, and: ↑ in HC rETR (relative electron transport rate) and maximum rETR (rETR$_{max}$), NPQ: significantly ↓ HC</td>
<td>Wu et al. (2010)</td>
</tr>
<tr>
<td>Calcidiscus leptoporus (G.Murray & V.H.Blackman) Loeblich Jr. & Tappan</td>
<td>pCO$_2$: 260 to 1600 µatm</td>
<td>Growth rate: ↓ in higher CO$_2$ % malformed coccoliths and cellular POC content: ↑ in higher CO$_2$</td>
<td>Langer & Bode (2011)</td>
</tr>
<tr>
<td>Pseudo-nitzschia multiseries (Hasle) Hasle</td>
<td>pCO$_2$: 220, 400, and 730 µatm</td>
<td>Specific growth rate, carbon fixation rate, DA (domoic acid), C:P (carbon-to-phosphorus) ratio: ↑ in high CO2 Q${Si}$ (cellular quotas of silicon) and Si:C ratio: ↓ in high CO$_2$</td>
<td>Sun et al. (2011)</td>
</tr>
</tbody>
</table>

Table 3: Summary of various reports on pCO$_2$ manipulation on microalgae. (con’t)
<table>
<thead>
<tr>
<th>Eukaryotes</th>
<th>Thalassiosira pseudonana Hasle & Heimdal</th>
<th>Navicula directa (W. Smith) Ralfs</th>
<th>Thalassiosira pseudonana Hasle & Heimdal</th>
<th>Nitzschia lecointei van Heurck</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Coccolithophores</td>
<td>pCO$_2$: 750 µatm (high CO$_2$)</td>
<td>pCO$_2$: 365(ambient) and 915 (high) µatm (T. pseudonana); 495 (ambient) and 760(high) µatm (495, 760 µatm) (Rhodomonas)</td>
<td>pCO$_2$: 390 (ambient) and 1000 µatm (high)</td>
<td>pCO$_2$: 380 (ambient) and 960 µatm (high)</td>
</tr>
<tr>
<td>- Picoeukaryotes (Micromonas sp. and Bathycoccus sp.)</td>
<td>Mesocosm: 11000 litres, 2 days, nitrate and phosphate added to simulate blooming.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picoeukaryote sequence abundance: ↑ Micromonas sp. and Bathycoccus in high CO$_2$.</td>
<td></td>
<td>Concentrations of Chl a and DD significant ↓ in high CO$_2$.</td>
<td></td>
<td>Prasinophytes and dinoflagellates: majority during the bloom during high CO$_2$.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P$_{\text{max}}$ (rETR) (maximum photosynthetic rate) and I$_k$: Significantly ↓ in HC</td>
<td></td>
<td>Diatoms: Biomass ↓ in higher CO$_2$ levels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Photosynthetic carbon fixation rate and dark respiration rate: ↑ HC.</td>
<td></td>
<td>Cryptophytes, chlorophytes/haptophytes, Chrysophytes: Biomass significantly correlated to high CO$_2$.</td>
</tr>
</tbody>
</table>
Table 3: Summary of various reports on pCO₂ manipulation on microalgae. (con’t)

<table>
<thead>
<tr>
<th>Organism</th>
<th>pCO₂ (µatm)</th>
<th>Response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodularia spumigena</td>
<td>249 – 499 µatm (low), 287 – 571 µatm (medium), 395 – 630 µatm (high)</td>
<td>Biomass production, total concentrations of mucinous substances and APA (alkaline phosphatase activity): significant ↑ in the medium and high CO₂</td>
<td>Endres et al. (2013)</td>
</tr>
<tr>
<td>Trichodesmium erythraeum</td>
<td>180, 380, 980 and 1400µatm</td>
<td>N₂ fixation: approximately ↑ from 380 - 1400µatm, POC and PON: significantly ↑ from 180 - 1400µatm, N₂ fixation with C acquisitions correlated diurnally</td>
<td>Eichner et al. (2014)</td>
</tr>
<tr>
<td>Emiliania huxleyi</td>
<td>380(ambient), 950 (high) µatm</td>
<td>Coccolith weight: ↓ across ↑ CO₂ from 1993-2005, POC quotas, POC production rate (diploid stage), PIC production: ↓ in high CO₂</td>
<td>Meier et al. (2014)</td>
</tr>
<tr>
<td>Gephyrocapsa oceanica</td>
<td>≈ 510, 1050, and 1520 µatm</td>
<td>Growth rate, POC production rate, PIC production rate, rETRₘₚₙₜ: ↓ significantly in high CO₂</td>
<td>Zhang et al. (2015)</td>
</tr>
<tr>
<td>Cylindrotheca fusiformis</td>
<td>180(low), 380(ambient), 750 (high) µatm</td>
<td>PUFA and EAA (essential amino acids): ↑ at high CO₂</td>
<td>Bermúdez et al. (2015)</td>
</tr>
<tr>
<td>Emiliania huxleyi</td>
<td>395(ambient), 1000 (high) µatm</td>
<td>Phenolic acid content, mitochondrial respiration rate: ↑ at high CO₂</td>
<td>Jin et al. (2015)</td>
</tr>
</tbody>
</table>
Salinity fluctuation in freshwater and marine environments is another abiotic factor that can have deleterious effects on aquatic organisms. Salt stress reduced cell viability and photosynthetic efficiency, induced cytoplasmic vacuolization and ROS production, and caused deformation of organelles in a freshwater alga, *Micrasterias denticulate* (Affenzeller et al., 2009). Salt treatment also decreased enzymatic antioxidant activity in *Dunaliella salina* and its tolerance to salt stress was proposed to be improved by using a synthetic antioxidant to induce β-carotene biosynthesis (Einali & Valizadeh, 2015).

In general, different levels of salinity were reported to alter lipid content, fatty acid composition and biomass of microalgae (Pal et al., 2011; Salama et al., 2013). Changes of lipid profiles in response to salinity are in direct relation to cell membrane stability, photosynthetic rate and signal transduction (Lu et al., 2012). Under varying salt concentrations, mechanisms such as ion homeostasis and compartmentalization, ion transport and uptake, osmoprotectants and solutes, antioxidant regulation and enzyme activity were triggered to acclimatize to the osmotic stress (Gupta & Huang, 2014). How microalgae respond during period of osmotic stresses are summarized in Table 4.

Table 4: Summary of various reports on salinity stress on microalgae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Origin</th>
<th>Manipulated factors</th>
<th>Effects</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micrasterias denticulata Brébisson ex Ralfs</td>
<td>Freshwater</td>
<td>200mM NaCl or 200mM KCl</td>
<td>Cell viability ↓, change in morphology, Fv/Fm ↓, ROS ↑</td>
<td>Affenzeller et al. (2009)</td>
</tr>
<tr>
<td>Tetraselmis suecica (Kylin) Butcher Nitzschia sp. Alexandrium minutum Halim Prorocentrum lima (Ehrenberg) F.Stein</td>
<td>Marine</td>
<td>5-35psu</td>
<td>Photosynthesis and growth were affected under low salinity. T. suecica showed the highest tolerance.</td>
<td>D’ors et al. (2016)</td>
</tr>
<tr>
<td>Chlamydomonas nivalis (F.A.Bauer) Wille</td>
<td>Freshwater</td>
<td>0-1.5% NaCl</td>
<td>Total, neutral and polar lipids ↑. Polar lipid molecules identified as biomarkers were involved in cell membrane stability, signal transduction and photosynthesis.</td>
<td>Lu et al. (2012)</td>
</tr>
</tbody>
</table>
Table 4: Summary of various reports on salinity stress on microalgae. (con’t)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Habitat</th>
<th>Salinity Range (NaCl)</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desmodesmus armatus (Chodat)</td>
<td>Freshwater</td>
<td>2, 8, 11, 18 ppt (0.03, 0.14, 0.19 and 0.31M NaCl)</td>
<td>Biomass productivity ↓ at 18 ppt. Minimal effects on total lipid and fatty acid contents. von Alvensleben et al. (2016)</td>
</tr>
<tr>
<td>Mesotaenium sp.</td>
<td>Freshwater</td>
<td>0-400mM NaCl</td>
<td>Lipid and carbohydrate ↑. Stress biomarkers such as hydrogen peroxide, malondialdehyde, ascorbate peroxidase and proline ↑. Pancha et al. (2015)</td>
</tr>
<tr>
<td>Scenedesmus quadricauda Chodat</td>
<td>Freshwater</td>
<td>0.2-1.0mM NaCl</td>
<td>Biomass yield ↓, total Chl content ↓, carbohydrate ↑. Initial increase of NaCl (0-0.2mM), lipid ↓. Total protein ↓ at 0.2 & 0.4 mM and increased at ≥0.6mM. Kirrolia et al. (2011)</td>
</tr>
<tr>
<td>Amphora subtropica A.H.Wachnicka & E.E.Gaiser</td>
<td>Marine</td>
<td>0.25, 0.5, 1, 2, 3.5, 5M NaCl</td>
<td>With increasing salinity, biomass productivity ↓, total carotenoids content ↑, Chl a and b ↓, carbohydrate ↑, lipid ↑, protein ↓. Degree of unsaturation of the total fatty acids decreased. Thiobarbituric acid reactive substances (TBARS) and superoxide dismutase (SOD) activity ↑. BenMoussa-Dahmen et al. (2016)</td>
</tr>
<tr>
<td>Dunaliella sp.</td>
<td>Marine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botryococcus braunii Kützing</td>
<td>Freshwater</td>
<td>0.3, 0.7M NaCl</td>
<td>With increasing salinity, biomass yield ↓, lipid ↓, SFA and MUFA ↑, PUFA ↓. Zhila et al. (2011)</td>
</tr>
</tbody>
</table>
Interactive effects of multiple environmental factors

An increasing number of studies are reporting on the interactive effects of multiple stressors to provide a more comprehensive prediction on the effects of climate change on microalgae. Combinations of temperature, ultraviolet radiation, salinity stress and nutrient limitation are among the important conditions affecting the physiology and metabolism of microalgae.

Chlorella sp. isolated from the Antarctic region exhibited capacity for photosynthetic efficiency recovery after a combination of UV radiation and high temperature (5-20°C) treatment (Rivas et al., 2016). In another study, *Chlorella* strains from Antarctic, temperate and tropical regions showed different photosynthetic patterns in response to integrative effects of PAR, UV-A, UV-B with a range of temperatures. The Antarctic *Chlorella* strain notably showed lower photosynthetic recovery compared to the temperate and tropical strains (Wong et al., 2015).

Cell productivity of *Scenedesmus acuminatus*, *Cyclotella meneghiniana*, and Microcystis aruginosa increased under combined effects of elevated CO₂ level and temperature. The increase in microalgal cellular carbohydrates and proteins may eventually lead to changes in carbon cycling in the ecosystem (Li et al., 2016). Beardall et al. (2014) reviewed on the interactive effects of temperature, nutrient supply, UVR and CO₂ and suggested that UV-B is one of the important stressors which influence the impacts of other environmental factors on marine phytoplankton. However, the interdependency between the various factors and the mechanisms involved are still unclear. Effects of irradiance, temperature and photoperiod on the growth of microalgae were reported to be species-dependent (Singh & Singh, 2014).

In general, stress response of photosynthetic organisms to drought, salinity, cold and heat stress involve a complex interaction of various mechanisms ranging from gene expression, protein expression, metabolic adjustment and morphological changes. Amino acids, polyamines, betaines, polyols, storage substances such as starch and fructans are commonly involved in the response to unfavourable growth conditions (Krasensky & Jonak, 2012). By 2100, the future ocean conditions are predicted to be warmer, with higher iron content, higher pCO₂ and nutrient-limited. *Pseudonitzschia multiseries*, a sub-Antarctic diatom used as a representative species was predicted to be able to acclimatize and adapt to the future conditions, subsequently altering regional productivity and biogeochemistry (Boyd et al., 2015).

Besides being the primary producer in the ecosystem, many microalgal strains are potential feedstock for biofuel. Multiple parameters were manipulated to optimize the growth conditions for high lipid and fatty acid productivity. In addition to providing insights into the lipid accumulation pathways, these studies were also useful to understand cellular responses to environmental changes. For example, a combination of high light intensity, high salinity and nitrogen-replete condition enhanced biomass and lipid content in the marine microalga *Nannochloropsis* sp. The combined stresses of light intensity and salinity, in the absence of nitrogen as the main building block, might induce severe oxidative damage to fatty acids, enzymes and re-channelling of carbon for osmoprotection.
and energy storage (Pal et al., 2011). Total lipid and fatty acid contents in *Scenedesmus quadricauda* and *Tetraedron* sp. were increased under combined effects of high salinity and nutrient limitation, but the combined factors had minimal effects on *Desmodesmus armatus* and *Mesotaenium* sp. (von Alvensleben et al., 2016). A starchless mutant strain of *Chlamydomonas reinhardtii* accumulated higher lipid content under nitrogen deprivation at a higher temperature of 32ºC compared to its normal growth at 25ºC (James et al., 2013). In contrast, a combined stress of temperature and nitrogen limitation in *Nannochloropsis salina* did not show remarkable difference in terms of lipid and triglyceride accumulation than nitrogen stress alone (Fakhry & El Maghraby, 2015). The same genus *Nannochloropsis* sp. was treated with three parameters: salinity, light intensity and nitrogen availability in another study to compare its growth and lipid productivity. Triacylglycerol (TAG) accumulation was reported to be the highest under relatively high irradiance, nitrogen-replete and high salinity (Pal et al., 2011).

CONCLUSION AND FUTURE DIRECTION

This review provides an overview of the effects of multiple environmental drivers on microalgae. Most of the microalgal species are sensitive to abiotic stresses and able to acclimatize to various conditions. Changes in atmospheric CO₂ level, temperature, irradiation, salinity and combination of these effects will affect relative abundance and distribution of the species. However, understanding intracellular changes caused by a single parameter might be inaccurate and insufficient to represent the complexity of the actual environment. It is important to understand how the interactive effects can be additive, synergistic, or antagonistic in affecting the growth of microalgae in response to climate change. Replicating the actual environment and designing a multifactorial studies to investigate the synergistic effects of various environmental factors remains a challenge. Future work should continue to provide a more holistic understanding on the impacts of climate change on microalgae and predict the climate-driven perturbations in the ecosystem.

ACKNOWLEDGEMENTS

This study was supported by HICoE MoHE: IOES-2014H grant, HICoE MOHE: IOES-2014 (Air-ocean-land Interaction) grant, and UMCoE RU Grant: RU009-2015 and RU012-2016 (IOES).

REFERENCES

of the coccolithophore *Emiliania huxleyi* to an abrupt change in seawater carbon dioxide concentrations. *Biogeosciences* 7: 177–186.

Pancha, I., Chokshi, K., Maurya, R., Trivedi, K., Patidar, SK., Ghosh, A., & Mishra, S.

