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ABSTRACT  Phase equivalent potential corresponding to an energy-dependent 

potential is constructed via the formalism of supersymmetric quantum mechanics and the merit 

of our approach is assessed through model calculations. 
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1. INTRODUCTION 

 

The Hamiltonian hierarchy 

problems are generally dealt with using the 

supersymmetric quantum (SUSY) 

mechanics (Witten 1981; Cooper & 

Freedman 1983; Richard, Haymaker & Rau 

1985; Laha, Bhattacharyya, Roy & 

Talukdar 1988). The Hamiltonian hierarchy 

problems lead to the addition of centrifugal 

barrier to the parent potential and as a result 

the higher partial wave interactions are 

reproduced quite accurately. The interest in 

this area is triggered initially through the 

connection between degeneracy and 

symmetry. The methodology of SUSY 

quantum mechanics, identical to that of 

supersymmetry in field theory, was first 

suggested by Witten (1981), which narrates 

that a compatible Hamiltonian may be 

constructed for any parent Hamiltonian 

resulting in a supersymmetric Hamiltonian 

(Laha, Bhattacharyya, Roy & Talukdar 

1988). 

 

The application of supersymmetry 

(SUSY) in quantum mechanics opens a new 

direction to the problem of generating 

phase-equivalent potentials. According to 

the Levinson theorem (Newton 1982), the 

well behaved potentials with different 

numbers of bound states do not provide the 

same phase shifts at all energies. But the 

singular potentials with   singularity obey 

the generalized Levinson theorem and 

reproduce phase equivalent potentials with 

different numbers of bound states. This 

duality of the ‘deep’ and ‘shallow’ type 

potentials (Baye 1987) are common in 

nuclear physics particularly in nucleus-

nucleus scattering and optical model 

calculations. A number of transformations 

exist in SUSY quantum mechanics which 

either add or remove a number of bound 

states to/from the spectrum of a given 

Hamiltonian keeping the phase shifts 

unaltered. 
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The separable nonlocal interactions 

have been used successfully to fit nucleon-

nucleon phase data for different angular 

momentum states.  

Phase equivalent energy-dependent local 

potentials to nonlocal ones have been 

constructed by several groups to study 

nucleon-nucleon and nucleus-nucleus 

scattering problems (Arnold and MacKellar   

1971; Laha & Bhoi 2014; Laha, Majumder 

& Bhoi  2018). In this model the 

characteristics of the nonlocal interaction is 

compared with the phenomenology of the 

local potential, particularly the 

development of repulsive core and the 

phase shifts. The aim of the paper is to 

provide a compact formula for phase-

equivalent potentials and their related wave 

functions within the formalism of SUSY 

quantum mechanics. Arnold and MacKellar   

(1971) developed a method for constructing 

phase equivalent local potential from a 

separable nonlocal one. We shall follow the 

method of Arnold & MacKellar (1971) to 

construct phase equivalent energy-

dependent interactions and the associated 

local wave function. This local wave 

function in turn is used to construct phase 

equivalent potential through SUSY 

formalism. Several groups (Buck, Friedrich 

& Wheatley 1977; Michel et al., 1983) 

studied the supersymmetric aspects of the 

nucleon-nucleon scattering with one pion 

exchange model and examined the 

equivalence of deep parent potential to a 

shallow one with repulsive core.  

 

In the next section we construct 

phase equivalent potential to energy-

dependent local Yamaguchi potential. The 

third section is devoted to judge the merit of 

our approach through some model 

calculations by judicious use of the phase 

function method (PFM). The results 

obtained in this process are equivalent to 

the earlier results and finally, we conclude 

the results at the end. 

 

 

2. PHASE EQUIVALENT 

POTENTIAL 

 

Using the SUSY transformation 

which introduces a new ground state to V(r) 

below its ground state, the resultant phase 

equivalent potential  is obtained as 

(Sukumar 1985), 
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where  is an adjustable parameter and 
  )(0 x denotes the near the origin 

behaviour of the ground state wave function 

of )(rV . The resultant potentials )(12 rV in 

equation (1) for 1  possess 

identical spectra; same phase shifts and 

normalization constants for the excited 

states. However, they have different 

normalization constants for the ground state 

with different values of   . Hence this 

group of potentials belongs to a phase 

equivalent family. These expressions for  

 

the new group of potentials and eigen  

functions are in close agreement with that 

of the Gelfand–Lavitan (1955) procedure 

for changing the normalization constant of 

the ground state (Sukumar 1987; Bargmann 

1949).  Here in the present work we have 

chosen to work with  1 . 

 

About forty five years ago Arnold and 

MacKellar (1971) proposed a method for 

constructing phase equivalent energy-  
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dependent local potential to a non-local one. Solutions of a non-local equation is related to the 

solutions of the equivalent local potentials by        

                                    rkrkBrk LocalNonlocal ,,,                                                              (2) 

and 

                                       rkfrkBrkf LocalNonlocal ,,,  ,                           (3) 

 

where  rkNonlocal ,  and  rkf Nonlocal ,  are 

the regular and irregular solutions of the 

parent nonlocal Yamaguchi [1954) 

potential. The function  rkB ,  is the 

damping function and is related to the 

Wronskian  rkJ ,  of the pair of irregular 

solutions  rkf Nonlocal ,  which is written as 

 rkB , =  2

1

, rkJ    where,  
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with    rkfrkf NonlocalNonlocal ,,
*

  Following the approach of Arnold and MacKellar (1971) 

equivalent local potential  rkV , is obtained as 
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The solutions of Yamaguchi potential (1954) are written as  
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Using the above formalism eq. (1) becomes
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where,  
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Now we shall calculate the n-p, p-p phase 

shifts for the equivalent potential )(12 rV  

using phase function method. The phase 

function method (PFM) (Calogero, 1967) is 

an efficient tool for calculating the 

scattering phase shifts for local (Calogero, 

1967) and nonlocal interactions (Sett et al., 

1988; Bhoi & Laha, 2013; Laha & Bhoi, 

2013; Talukdar et al., 1977) in quantum 

mechanics.  

 

 In this case the radial wave function 

is separated into two parts namely, an 

amplitude part and an oscillating part with 

a variable phase ),( rk . For a local 

potential ),( rk satisfies a first order non-

linear differential equation given by 
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Here )(ĵ kr  and )(ˆ kr stand for the Riccati Bessel functions.  

 

3. RESULTS AND DISCUSSIONS 

 

 The nucleon-nucleon scattering 

phase shifts 
np  and 

pp  for n-p & p-p 

systems with the energy-dependent 

interaction )(12 rV  for the states 
1

3

0

1 & SS

are computed and compared our results 

with the standard data of Arndt et al. (1983). 

To do so we have worked with the 

parameters of Arnold-MacKellar (1971), 

van Haeringen (1975) and Laha-Bhoi 

(2014). We have used 
22 47.41/ fmMeVmp   and 

1

0 8.28/1  fmaV  for the nucleon-nucleon 

system. The associated phase shifts are 

portrayed in Figs. 1-3 along with nucleon-

nucleon experimental data (Arndt et al. 

1983). Here we have used the parameters of 

refs. (Arnold & MacKellar 1971), (van 

Haeringen 1975) and (Laha-Bhoi 2014) 

which are 3237.5  fm , 
14054.1  fm  ; 3405.2  fm , 

11.1  fm  for 1S0 state and 
3533.7  fm , 14054.1  fm  ; 
3901.3  fm , 11.1  fm  for 3S1 state 

respectively. 

 

Figure 1. 
0

1 S  n-p Phase shifts as a function of LabE . 

 

Looking closely in figs. 1 & 2 it is noticed 

that the 1S0 n-p phase shifts with )(12 rV  

interaction produce better result for the 

parameters of van Haeringen (1975) than 

Arnold & MacKellar (1971). For p-p 

scattering also the parameters of van 

Haeringen (1975) are in good agreement 

with the experimental data (Arndt et al. 

1983) except at very low energies.
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Figure 2. 

0

1 S  p-p Phase shifts as a function of LabE  

 

Figure 3. 1

3S  n-p Phase shifts as a function of LabE .  

 

It may thus be concluded that the 

parameters of van Haeringen (1975) are 

superior to Arnold-MacKellar (1971) as far 

as n-p scattering is concerned. For 3S1 n-p 

scattering phases as shown in fig. 3 it is 

observed that the parameters of Laha-Bhoi 

(2014) reproduced correct results over the 

entire range of energies. Therefore, 

parameters of Laha-Bhoi (2014) are more 

in agreement with the n-p scattering model 

instead of Arnold & MacKellar (1971) in 
3S1 state. 

 

 

4. CONCLUSIONS 

 
In this text first we have localized 

the separable non-local interaction by the 

use of the Green’s functions with irregular 

boundary conditions and secondly, used 

these local wave functions to construct 

another phase equivalent potential 

following SUSY approach. The PFM 

(Calogero, 1967) has been exploited to 

compute nucleon-nucleon scattering phase 

shifts for the newly constructed potential.  

 

It is observed that the phase shifts of 

our energy-momentum dependent 

equivalent local potential derived via the 

SUSY formalism are in good agreement 

with the experimental data (Arndt et al. 

1983) particularly, at low and intermediate 

range of energies.  

The phase shifts for the parent 

nonlocal potential (Yamaguchi 1954) with 

the parameters in the text match quite well 

with Arndt et al. (1983) up to maximum 30 

MeV and beyond that they discerns. But it 

is noticed that our energy-momentum 

dependent equivalent potential, developed 
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via the SUSY formalism, reproduced much 

better result than the parent nonlocal 

interaction with the parameters of van 

Haeringen (1975) and Laha-Bhoi (2014). 

This is attributed to the fact that the 

supposition of non-local potential which are 

originated from a many body theory is 

unrealistic. As we are habituated to thinking 

potential locally, equivalent local potential 

may be a convenient way to explain the 

properties of non-local one better. 

Therefore, this attempt has been made 

towards the development of equivalent 

local potential to a nonlocal one which 

provides a greater understanding of nuclear 

interaction. 

 

 Thus, one may conclude that 

nuclear forces are predominantly non 

central in character than central one.  

 

Therefore, the combined  approach 

of supersymmetry and the PFM to potential 

scattering has immense importance to  

analyze the nucleon-nucleon scattering 

phase shifts. The present treatment is more 

acceptable and straightforward than the 

earlier approaches to the problem (Sukumar 

1987; Baye 1987).  

 

 The present prescription can also be 

extended for nucleon-nucleus 

)/()( pn     and nucleus-nucleus 

)/()( 3H   elastic scattering 

without any restriction to the form factors 

of the nonlocal separable potential. Since 

our approach to the problem of interest is a 

simple but different one in the literature for 

the calculation of physical observables so 

we think that it must gives some attractive 

insight for different work to the physicist.   

 

 

5. ACKNOWLEDGEMENTS 

 

 The author(s) received no financial 

support for the research, authorship, and/or 

publication of this article. 

6. REFERENCES 

 
Arndt, R. A., Roper, L. D., Bryan, R. A., 

Clark, R. B., Ver West, B. J. Signel, 

P. (1983). Nucleon-nucleon partial-

wave analysis to 1 GeV. Physical 

Review D, 28, 97-122.  

DOI:https://doi.org/10.1103/PhysR

evD.28.97 

 

Arnold, L.G., MacKellar, A. D. (1971). 

Study of equivalent Local Obtained 

from Separable  Two- Nucleon 

Interactions. Physical Review C, 3, 

1095-1103. DOI: 

https://doi.org/10.1103/PhysRevC.

3.1095 

 

Bargmann, V. (1049). On the of a Central 

Field of Force from the Elastic 

Scattering Shifts. Physical Review, 

75. DOI: 

https://doi.org/10.1103/PhysRev.75

.301 

 

Baye, D. (1987). Supersymmetry between 

deep and shallow nucleus- 

potentials. Physical Review Letters, 

58, 2738-2741. DOI: 

https://doi.org/10.1103/PhysRevLe

tt.58.2738 

 

Bhoi, J., Laha, U. (2013). Hamiltonian 

hierarchy and n–p.  Journal of 

Physics  G: & Particle Physics, 40, 

045107.DOI:https://doi.org/10.108

8/09543899/40/4/045107 

 

Buck, B., Friedrich, H., Wheatley, C. 

(1977). Local potential models for 

the scattering of complex nuclei 

Nuclear Physics A, 275, 246-268. 

DOI: https://doi.org/10.1016/0375-   

9474(77)90287-1 

 

Calogero, F. (1967). Variable Phase 

Approach to Potential Scattering. 

U. S. A: Academic. 

 

https://doi.org/10.1103/PhysRevD.28.97
https://doi.org/10.1103/PhysRevD.28.97
https://doi.org/10.1103/PhysRevC.3.1095
https://doi.org/10.1103/PhysRevC.3.1095
https://doi.org/10.1103/PhysRev.75.301
https://doi.org/10.1103/PhysRev.75.301
https://doi.org/10.1103/PhysRevLett.58.2738
https://doi.org/10.1103/PhysRevLett.58.2738
https://doi.org/10.1088/09543899/40/4/045107
https://doi.org/10.1088/09543899/40/4/045107
https://doi.org/10.1016/0375-%20%20%209474(77)90287-1
https://doi.org/10.1016/0375-%20%20%209474(77)90287-1


Malaysian Journal Of Science 39(1): 63-71 (February 2020) 

 

70 
 

Cooper, F., Freedman, B. (1983).  Aspects 

of Supersymmetric quantum 

mechanics. Annals of Physics NY, 

146, 262-288. DOI: 

https://doi.org/10.1016/0003-

4916(83)90034-9 

 

Gelfand, I. M.,  Levitan, B. M. (1955). On 

the determination of of a differential 

equation from its spectral function.  

American Mathematical Society 

Translations: Series 2, 1, 253-304.  

 

Laha, U., Bhattacharyya, C., Roy, K., 

Talukdar, B. (1988). Hamiltonian 

hierarchy and Hulthén Potential  

Phyical. Review  C,  38, 558-560. 

DOI:https://doi.org/10.1103/PhysR

evC.38.558 

 

Laha, U., Bhoi, J. (2013). On the nucleon–

nucleon scattering phase shifts 

through supersymmetry and 

factorization. Pramana-Journal of 

Physics 81, 959-973. DOI:  

https://doi.org/10.1007/s12043-

013-0627-z 

Laha, U., Bhoi, J. (2014). Comparative 

study of the energy dependent and 

independent two nucleon 

interactions — A supersymmetric 

approach. International Journal of  

Modern Physics E, 23, 1450039. 

DOI: https://doi.org/10.1142/S0218

301314500396 

 

Laha, U., Majumder, M., Bhoi, J. (2018). 

Volterra integral equation-

factorisation method and nucleus–

nucleus elastic scattering,  

Pramana– J. Phys., 90, 48. DOI: 

https://doi.org/10.1007/s12043-

018-1537-x 

 

Michel, F., Albinski, J.,  Belery, P., Delbar, 

T.,  Gregoire, G., Tasiaux, B., 

Reidemeister G. (1983). Optical 

model description of α+16O elastic 

scattering and alpha-cluster 

structure in 20Ne. Physical Review 

C, 28, 1904-1917. DOI: 

https://doi.org/10.1103/PhysRevC.

28.1904 

 

Newton, R. G. (1982). Scattering Theory of 

Waves and Particles (2nd ed.), 

Verlag, New York: Springer. 

 

Sett, G. C., Laha, U., Talukdar, B. (1988). 

Phase-function method for 

Coulomb-distorted nuclear 

scattering. Journal of Physics A: 

Mathematical & General, 21, 3643-

3657. DOI: 

https://doi.org/10.1088/0305-

4470/21/18/017 

 

Sukumar, C. V. (1985). Supersymmetry, 

factorisation of the Schrodinger 

equation and a Hamiltonian 

hierarchy. Journal of Physics  A: 

Mathematical & General, 18, L57-

62.DOI:https://doi.org/10.1088/030

5-4470/18/2/001  

 

Sukumar, C. V. (1987). Supersymmetry 

and potentials with bound states at 

arbitrary energies. II. Journal of 

Physics  A: Mathematical & 

General, 20, 2461-2481. DOI: 

https://doi.org/10.1088/0305-

4470/20/9/032 

 

Talukdar, B., Chatterjee, D., Banarjee, P. 

(1977). A generalized approach to 

the phase-amplitude method. 

Journal of Physics  G: Nuclear 

Physics, 3, 813-820. DOI: 

https://doi.org/10.1088/0305-

4616/3/6/012  

 

Van Haeringen, H. (1975). Scattering 

length and effective range in closed 

form for the Coulomb plus 

Yamaguchi potential.  Nuclear 

Physics A, 253, 355-364. 

DOI: https://doi.org/10.1016/03759

474(75)90486-8 

 

https://doi.org/10.1016/0003-4916(83)90034-9
https://doi.org/10.1016/0003-4916(83)90034-9
https://doi.org/10.1007/s12043-013-0627-z
https://doi.org/10.1007/s12043-013-0627-z
https://doi.org/10.1142/S0218301314500396
https://doi.org/10.1142/S0218301314500396
https://doi.org/10.1007/s12043-018-1537-x
https://doi.org/10.1007/s12043-018-1537-x
https://doi.org/10.1103/PhysRevC.28.1904
https://doi.org/10.1103/PhysRevC.28.1904
https://doi.org/10.1088/0305-4470/21/18/017
https://doi.org/10.1088/0305-4470/21/18/017
https://doi.org/10.1088/0305-4470/18/2/001
https://doi.org/10.1088/0305-4470/18/2/001
https://doi.org/10.1088/0305-4470/20/9/032
https://doi.org/10.1088/0305-4470/20/9/032
https://doi.org/10.1088/0305-4616/3/6/012
https://doi.org/10.1088/0305-4616/3/6/012
https://doi.org/10.1016/03759474(75)90486-8
https://doi.org/10.1016/03759474(75)90486-8


Malaysian Journal Of Science 39(1): 63-71 (February 2020) 

 

71 
 

Witten, E. (1981). Dynamical Breaking of 

Supersymmetry, Nuclear Physics 

B, 185, 513-554. 

DOI: https://doi.org/10.1016/0550-

3213(81)90006-7 

 

Yamaguchi, Y. (1954). Two-Nucleon 

Problem When the Potential Is 

Nonlocal but Separable.I Phys. 

Rev., 95, 1628-1634. DOI: 

https://doi.org/10.1103/PhysRev.95

.1628 

 

 

https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1103/PhysRev.95.1628
https://doi.org/10.1103/PhysRev.95.1628

