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ABSTRACT This paper presents a new factoring technique on the modulus 𝑁 =
𝑝2𝑞, where 𝑝 and 𝑞 are large prime numbers. Suppose there exists an integer 𝑒 satisfies the 

equation 𝑒𝑑 − 𝑘𝜙(𝑁) = 1, for some unknown integer 𝑑, 𝑘 and 𝜙(𝑁) is the Euler’s totient 

function. Our method exploits the term 𝑁 − ((22 3⁄ + 2−1 3⁄ )𝑁2 3⁄ − 21/3𝑁1/3 )  to be the 

closest integer to the unknown parameter 𝜙(𝑁). Hence we show that the unknown parameters 

𝑘  and 𝑑  can be recovered from the list of the continued fractions expansion of 
𝑒

𝑁−((22 3⁄ +2−1 3⁄ )𝑁2 3⁄ −21/3𝑁1/3 ) 
.  Furthermore, we present an algorithm to compute the prime 

factors of 𝑁 = 𝑝2𝑞 in polynomial time after obtaining the correct tuple 𝑑, 𝑘, and 𝜙(𝑁). 

 

Keywords: RSA cryptosystem, continued fractions, secret exponent, cryptanalysis. 

 
 

  

1. INTRODUCTION 

 

 From the beginning of time until the 

1970s, the technology for practicing secret 

communication, which is widely known as 

encryption and decryption, were always 

done in a symmetrical manner. In early 

1978, the RSA cryptosystem (Rivest et al., 

1978) that was introduced (abbreviated 

accordingly to its creator; Rivest, Shamir, 

and Adleman) became a phenomenon in the 

world of secrecy of which was regarded as 

the first practical realization of the 

asymmetric cryptosystem as opposed to 

symmetric cryptosystem. 

 

Invented in 1978, the RSA 

cryptosystem was amongst the most 

commercialized asymmetric cryptosystem. 

The RSA cryptosystem has competed for 

the vital role of reassuring the 

confidentiality, integrity, authenticity, and 

non-reputability of modern age digital 

communications and information (Rahman 

et al., 2018). The security aspects of RSA 

cryptosystem hardly depend on the 

following three parameters as follows. The 

first one is the product of two large primes 

𝑝 and 𝑞 or widely known as the modulus 

𝑁 = 𝑝𝑞 , secondly the secret value of 

𝜙(𝑁) , which derived from the Euler’s 

totient function, and finally the public and 

private exponent 𝑒  and 𝑑  which related 

by the congruence relation 𝑒𝑑 ≡

1 mod  (𝜙(𝑁)) . Hence, based on three 

hard mathematical problems lies the 
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difficulties in breaking the RSA 

cryptosystem (Abubakar et al., 2018). The 

first one is the integer factorization problem 

of 𝑁 = 𝑝𝑞. Multiplying the two primes to 

form an integer 𝑁  is straightforward. 

However, determining the prime numbers 

primes 𝑝  and 𝑞  given 𝑁  are 

impracticable because of the time it might 

take even using the fastest computers. 

Second, the 𝑒th root problem from  𝐶 ≡
𝑀𝑒 (mod 𝑁) and the third one is to solve 

the Diophantine key equation 𝑒𝑑 −
𝑘𝜙(𝑁) = 1  that contains three variables 

namely 𝑑, 𝜙(𝑁) and 𝑘 . There are several 

problems to consider on implementing 

RSA cryptosystem, which includes 

reducing the execution of encryption and/or 

decryption time (Abubakar et al., 2018). 

For example, if the secret exponent 𝑑  is 

relatively small, then the RSA 

cryptosystem seems to have faster 

decryption process. However, the 

knowledge of secret exponent 𝑑 will lead 

to the factorization of 𝑁  in polynomial 

time. 

 

In 1990, Wiener (1990) proved that 

RSA to be totally insecure if the secret 

exponent 𝑑 <
1

3
𝑁1/4. Wiener was able to 

obtain the integer solutions through the 

continued fractions of 
𝑒

𝑁
 and eventually 

lead to factor the modulus 𝑁 = 𝑝𝑞. Next, 

Bunder and Tonien (2017) presents a new 

attack based  on Wiener’s approach upon 

the RSA cryptosystem using the mid-point 

technique and continued fractions. 

Furthering this, by using another proving 

technique, Asbullah and Ariffin (2019) 

proposed an extension of Wiener’s work 

which RSA insecure when the secret 

exponent 𝑑 <
1

2
𝑁1/4 .  Alternatively, de 

Weger (2002) proposed an attack to the 

RSA cryptosystem considering the 

generated modulus is resulted from 

multiplying two relatively near its 

respective prime factors. de Weger (2002) 

showed that, if the distance between 𝑝 and 

𝑞 is relatively near, then 𝑁 − 2√𝑁 + 1 is 

a good choice to be the closest integer to the 

unknown parameter to 𝜙(𝑁) compared to 

𝑁 . Hence, 
𝑘

𝑑
 is recovered in polynomial 

time amongst the enumeration of the 

continued fractions 
𝑒

𝑁−2√𝑁+1 
. Maitra and 

Sarkar (2010), on the other hand, using in a 

different setting, presented a situation of 

when 𝑝  and 2𝑞  are small when being 

subtracted. They used the term 𝑁 −
3

√2
√𝑁 + 1  as a good approximation to 

𝜙(𝑁)  instead of 𝑁 . Hence, they proved 

that 
𝑘

𝑑
 can be recovered amongst the list of 

the continued fractions expansion of 
𝑒

𝑁−
3

√2
√𝑁+1 

. Most of the time, the utilization 

of short secret exponent encounters a 

significant security drawback in varied 

instances of RSA. 

 

Numerous cryptosystems, including 

variant designs of the RSA utilizing 𝑁 =
𝑝2𝑞 to accomplish better throughput. One 

of the reasons is to improve the 

computational efficiency while keeping up 

the level of security. In 1998, Takagi (1998)  

showed that the decryption process is about 

three times faster than RSA cryptosystem 

using Chinese Remainder Theorem if they 

choose the 768-bit modulus 𝑝2𝑞 for 256-

bit primes 𝑝 and 𝑞 . Later, Okamoto and 

Uchiyama (1998) presented a public key 

cryptosystem that is provably as secure as 

factoring a modulus of the form 𝑁 = 𝑝2𝑞. 

Alternatively, Mahad et al., (2017) 

presented efficient methods that manipulate 

the mathematical structure of the modulus 

to overcome Rabin cryptosystem 

decryption failure which was due to a four-

to-one mapping scenario. Additionally, the 

design of Rabin cryptosystem (Asbullah & 

Ariffin, 2016)  incorporating the hardness 

of factoring integer as its source of security 

which successfully eliminates the 

decryption failure of any variant of Rabin-

based cryptosystem. Recently, the 

enhanced version of the cryptosystem 

Asbullah et al., 2018) was introduced which 

replace their original decryption 
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mechanism with the Rabin decryption yet 

still retain the use of the modulus. 

  

Motivated from de Weger’s 

generalization attack (de Weger, 2002) and 

Maitra and Sarkar’s attack (Maitra and 

Sarkar, 2010), a new attack on RSA-type 

modulus 𝑁 = 𝑝2𝑞  (Asbullah & Ariffin, 

2015) was proposed by applying the term 

𝑁 − (2𝑁2/3𝑁1/3)  as a better choice of 

integer that closest to 𝜙(𝑁)  for solving 

unknown integer 𝑑, 𝑘  implicitly from the 

equation 𝑒𝑑 − 𝑘𝜙(𝑁) = 1 . Hence, they 

showed that 
𝑘

𝑑
 is one of the convergent of 

the continued fractions expansion of 
𝑒

𝑁−(2𝑁2/3−𝑁1/3)  
 and able to determine, in 

polynomial time the prime factors of 𝑁 =
𝑝2𝑞. A more general result for factoring the 

modulus in form of 𝑁 = 𝑝𝑟𝑞  for 𝑟 ≥ 2 

can be found in Nitaj & Rachidi (2015). In 

2018, Rahman et al. (2018) extends the 

result of Asbullah & Ariffin (2015) to 

multiple moduli 𝑁𝑖 = 𝑝𝑖
2𝑞𝑖  for some 

integer 𝑖. Rahman et al. (2018) proves that 

solving a system of equations by combining 

the set of 𝑁𝑖 = 𝑝𝑖
2𝑞𝑖  and the 

approximation of 𝜙(𝑁) from Asbullah & 

Ariffin (2015) lead to a successful 

factorization in polynomial time. In 2018, 

Bunder et.al (2018) proposed 

cryptanalytical results upon several variants 

of RSA, i.e. based on Lucas sequences, 

Gaussian integers, and elliptic curves. The 

common mathematical equation between 

those variants is the use of modified Euler’s 

function in the form ϕ(𝑁) = (𝑝2 −
1)(𝑞2 − 1)  and relates to the modified 

RSA variant key equation in the form 𝑒𝑑 +
𝑘ϕ(𝑁) = 1. The results in Bunder et al., 

(2018) was generalized later by Nitaj et al., 

(2018) where 𝑒𝑥 + 𝑦ϕ(𝑁) = 1  for some 

unknown integer 𝑥, 𝑦. Working in the same 

direction as Bunder et al., (2018) and Nitaj 

et al., (2018), recently Rahman et al., 

(2019) presents three different attacks on a 

generalized RSA key equation in the form 

of 𝑒𝑥 + 𝑦𝜙(𝑁) = 1 where 𝑁 = 𝑝2𝑞.

 Our contribution: In this work, a 

new factoring technique on the integer of 

the form 𝑁 = 𝑝2𝑞, by using the continued 

fractions expansion method is presented. 

We consider the difference between 2𝑞 

and 𝑝 is small instead of 𝑝 and 𝑞 is small 

as in Asbullah & Ariffin, (2015) . We prove 

that if we apply the term  𝑁 − ((22/3 +

2−1/3)𝑁2/3 − 21/3𝑁1/3)  as a good 

approximation of 𝜙(𝑁)  satisfies the key 

equation 𝑒𝑑 − 𝑘𝜙(𝑁) = 1, then  
𝑘

𝑑
 is one 

of the convergent of the continued fraction 
𝑒

𝑁−((22 3⁄ +2−1 3⁄ )𝑁2 3⁄ −21/3𝑁1/3 )
 satisfy 

2𝑝5/3|21/3𝑞1/3 − 𝑝1/3| <
1

6
𝑁𝛾   and 𝜎 <

1−𝛾

2
. 

 

The layout of the paper is as 

follows. In Section 2, we begin with a brief 

review on continued fraction expansion and 

a very important theorem that will be used 

throughout the paper. In Section 3 we 

present our new cryptanalysis. Section 4 

shows the factoring algorithm of the 

modulus 𝑁 = 𝑝2𝑞  together with an 

example. We summarized our work in 

Section 5. 

 

 

2. PRELIMINARIES 

 
 In this section, we state the 

definition of continued fraction and a useful 

theorem that form the basis for this paper. 

 

Definition 2.1 (Continued fraction) Each 

rational number 𝑥  can be written as an 

expression of the form 

 

𝑥 = 𝑎0 +
1

𝑎1 +
1

⋱ +
1

𝑎𝑛+⋱
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A simple way to show the above expression is by the form 𝑥 = [𝑎0, 𝑎1, 𝑎2. . . . 𝑎𝑛]. We define 

that the 𝑖𝑡ℎ term from the list of the continued fraction to be [𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑖] for 𝑖 ≥ 0.  

An important result on continued fractions that will be used is the following theorem. 

 

Theorem 2.1 (Legendre's Theorem (Hardy & Wright, 1965))  Suppose 𝑥 is written in its 

continued fraction expansion [𝑎0, 𝑎1, 𝑎2, … ] form. If 𝑦, 𝑧 ∈ ℤ and coprimes such that  

|𝑥 −
𝑦

𝑧
| <

1

2𝑧2
 

then 
𝑦

𝑧
 is a rational number amongst the continued fraction’s convergent of 𝑥. 

 

Theorem 2.2 (Approximation of 𝝓(𝑵) (Asbullah & Ariffin, 2015)) Let 𝑁 = 𝑝2𝑞  with 

𝑞 < 𝑝 < 2𝑞 and 𝜙(𝑁) is the Euler’s Totient function for N . Then  

2𝑁2/3 − 𝑁
1
3 < 𝑁 − 𝜙(𝑁) < ((22/3 + 2−1/3)𝑁2/3 − 21/3𝑁1/3) 

 

The Theorem 2.2 shows that 𝑁 −

(2𝑁2/3 − 𝑁
1

3)  is regarded as a better 

approximation to 𝜙(𝑁)  whenever the 

prime 𝑞 closed to the prime 𝑝 . While 

𝜙(𝑁)  can be approximated better by the 

term 𝑁 − ((22/3 + 2−1/3)𝑁2/3 −

21/3𝑁1/3)  for the case of the prime 

𝑝 closed to the prime 2𝑞.  

 

 

3. RESULTS 

  

Throughout this work, we assume 

that the modulus 𝑁 = 𝑝2𝑞  is an RSA 

modulus where the bit-length of the primes 

𝑝 and 𝑞 are in the same size (i.e. 𝑞 < 𝑝 <
2𝑞). In this section, we will introduce our 

new cryptanalysis. Based on Theorem 2.2 

in Asbullah & Ariffin, (2015), the term  

𝑁 − ((22/3 + 2−1/3)𝑁2/3 − 21/3𝑁1/3)  is 

a better choice of integer that closest to 

𝜙(𝑁)  satisfy the key equation 𝑒𝑑 −
𝑘𝜙(𝑁) = 1.  Thus, the following results 

proves that the enumeration of the 

computed continued fraction 
𝑒

𝑁−((22 3⁄ +2−1 3⁄ )𝑁2 3⁄ −21/3𝑁1/3 )
 produced the 

desired unknown parameters 𝑘 and 𝑑.

 

 

Lemma 3.1 Let 𝑁 = 𝑝2𝑞 and  𝜙(𝑁) = 𝑁 − (𝑝2 + 𝑝𝑞 − 𝑝) with 𝑞 < 𝑝 < 2𝑞. Then,  

 

|𝑁 − ((22 3⁄ + 2−1 3⁄ )𝑁2 3⁄ − 21/3𝑁1/3) − 𝜙(𝑁)| < 2𝑝5/3|21/3𝑞1/3 − 𝑝1/3|. 
 

Proof. Let 𝑁 = 𝑝2𝑞. By using 𝜙(𝑁) = 𝑝(𝑝 − 1)(𝑞 − 1) = 𝑁 − (𝑝2 + 𝑝𝑞 − 𝑝), we get 

 

|𝑁 − ((22 3⁄ + 2−1 3⁄ )𝑁2 3⁄ − 2
1
3𝑁

1
3 − 𝜙(𝑁))| 

= |𝑝2 + 𝑝𝑞 − 𝑝 − ((22 3⁄ + 2−1 3⁄ )𝑁2 3⁄ − 2
1
3𝑁

1
3)| 

= |𝑝2 + 𝑝𝑞 − 𝑝 − ((22 3⁄ + 2−1 3⁄ )(𝑝2𝑞 )2 3⁄ − 2
1
3(𝑝2𝑞 )

1
3)| 

 = |2
1
3𝑞

1
3 − 𝑝

1
3| ⋅ 𝑝2 3⁄ (𝑝 + 2

1
3𝑝2 3⁄ 𝑞

1
3 − 2−1 3⁄ 𝑝1 3⁄ 𝑞

2
3 − 1) 

< |21/3𝑞1/3 − 𝑝1/3| ⋅ 𝑝2 3⁄ (𝑝 + 21/3𝑝2 3⁄ 𝑞1/3) 



Malaysian Journal Of Science 39(1): 72-80 (February 2020) 

 

76 

 

< |2
1
3𝑞

1
3 − 𝑝

1
3| ⋅ 𝑝2 3⁄ ⋅ 2𝑝 

< 2𝑝
5
3 |2

1
3𝑞

1
3 − 𝑝

1
3| 

                                                                                                                                                                                                                                

Now we present our new cryptanalysis on the modulus of the form 𝑁 = 𝑝2𝑞 with 𝑞 <  𝑝 <
 2𝑞 by using the continued fractions to solve for the unknown values 𝑘 and 𝑑. 

 

Theorem 3.1. Let 𝑁 = 𝑝2𝑞 with 𝑞 <  𝑝 <  2𝑞. Let 𝛷 = (22 3⁄ + 2−1 3⁄ )𝑁2 3⁄ − 21/3𝑁1/3. 

Let 1 < 𝑒 < 𝜙(𝑁) < 𝑁 − 𝛷  satisfy 𝑒𝑑 − 𝑘𝜙(𝑁) = 1 where 𝜙(𝑁), 𝑑  and 𝑘  are unknown 

integers. Suppose 𝜙(𝑁) >
2

3
𝑁 and  𝑁 > 6𝑑. Suppose 2𝑝5/3|21/3𝑞1/3 − 𝑝1/3| <

1

6
𝑁𝛾  and  

𝑑 = 𝑁𝜎 . If 𝜎 <
1−𝛾

2
, then |

𝑒

𝑁−𝛷
−

𝑘

𝑑
| <

1

2𝑑2. 

 

Proof. We transform the equation 𝑒𝑑 − 𝑘𝜙(𝑁) = 1 to                                                                  

𝑒𝑑 − 𝑘(𝑁 − (𝑝2 + 𝑝𝑞 − 𝑝)) = 1 

𝑒𝑑 − 𝑘 (𝑁 − (𝑁 − 𝜙(𝑁))) = 1 

𝑒𝑑 − 𝑘(𝑁 − 𝛷 + 𝛷 − (𝑁 − 𝜙(𝑁))) = 1 

 

And we rearrange, 

 𝑒𝑑 − 𝑘(𝑁 − 𝛷) = 1 − 𝑘(𝑁 − 𝜙(𝑁) − 𝛷)  (1) 

 

Observed on the left-hand side, divides (1)  by 𝑑(𝑁 − 𝛷) , we obtain the following 

inequalities. 

 

|
𝑒

𝑁 − 𝛷
−

𝑘

𝑑
| = |

𝑒

𝑁 − 𝛷
−

𝑒

𝜙(𝑁)
+

𝑒

𝜙(𝑁)
−

𝑘

𝑑
| 

                           ≤  |
𝑒

𝑁 − 𝛷
−

𝑒

𝜙(𝑁)
| + |

𝑒

𝜙(𝑁)
−

𝑘

𝑑
| 

                                   ≤ 𝑒 |
𝜙(𝑁) − (𝑁 − 𝛷)

𝜙(𝑁)(𝑁 − 𝛷)
| + |

𝑒𝑑 + 𝑘𝜙(𝑁)

𝜙(𝑁)𝑑
| 

                                   ≤ 𝑒 |
(𝑁 − 𝛷) − 𝜙(𝑁)

𝜙(𝑁)(𝑁 − 𝛷)
| + |

𝑒𝑑 + 𝑘𝜙(𝑁)

𝜙(𝑁)𝑑
| 

 

Since 𝑒 < 𝑁 − 𝛷 and 𝑒𝑑 − 𝑘𝜙(𝑁) = 1, then we have 

 

|
𝑒

𝑁 − 𝛷
−

𝑘

𝑑
| < |

(𝑁 − 𝛷) − 𝜙(𝑁)

𝜙(𝑁)
| +

1

𝜙(𝑁)𝑑
. 

 

By using Lemma 3.1 which 2𝑝5/3|21/3𝑞1/3 − 𝑝1/3| <
1

6
𝑁𝛾, 𝜙(𝑁) >

2

3
𝑁, 𝑁 > 6𝑑 and 𝑑 =

𝑁𝜎, we get 

 

|
(𝑁 − 𝛷) − 𝜙(𝑁)

𝜙(𝑁)
| +

1

𝜙(𝑁)𝑑
<  

2𝑝5/3|21/3𝑞1/3 − 𝑝1/3|

𝜙(𝑁)
+

1

𝜙(𝑁)𝑑
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             <

1
6

𝑁𝛾

2
3 𝑁 

+
1

4𝑑2
 

                            =
1

4 
𝑁𝛾−1 +

1

4𝑑2
 

                        =
1

4 
𝑁𝛾−1 +

1

4
𝑁−2𝜎 

 

Obviously from the Theorem 2.1, it suffices to take  𝛾 − 1 < −2𝜎. Therefore, we obtain 𝜎 <
1−𝛾

2
. 

 
 
4. FACTORING ALGORITHM 

 

 Suppose we are given the tuple 

(𝑁, 𝑒)  which satisfy all condition of 

Theorem 3.1, then in this section we present 

the factoring algorithm of the modulus of 

the form 𝑁 = 𝑝2𝑞 and its proof of 

correctness. For completion, we also 

provide a numerical illustration of our 

result. 

  

Corollary 4.1  The modulus 𝑁 = 𝑝2𝑞 

can be factored in polynomial time if 𝑑 

and 𝑘  are appeared amongst the 

enumeration of the continued fraction 

expansion of 

|
𝑒

𝑁−((22 3⁄ +2−1 3⁄ )𝑁2 3⁄ −21/3𝑁1/3 )
|. 

 

Proof. From Theorem 3.1, suppose the 

unknown 𝑑 and 𝑘 have appeared amongst 

the enumeration once the computation of 

continued fraction 

|
𝑒

𝑁−((22 3⁄ +2−1 3⁄ )𝑁2 3⁄ −21/3𝑁1/3 )
|  finished, 

then we have 
𝑒𝑑−1

𝑘
= 𝜙(𝑁). From Lemma 

3.1, evidently, 𝜙(𝑁) is a multiple of prime 

𝑝 . Therefore, by determining the 

gcd (
𝑒𝑑−1

𝑘
, 𝑁), we obtain the prime factor 

𝑝. Hence we obtain the prime 𝑞. 

 

Algorithm 1. Factoring algorithm of 𝑁 = 𝑝2𝑞 

1. Determine all the list of the continued fraction  
𝑒

𝑁−((22 3⁄ +2−1 3⁄ )𝑁2 3⁄ −21/3𝑁1/3 )
. 

2. For each convergent 
𝑘

𝑑
 of  

𝑒

𝑁−((22 3⁄ +2−1 3⁄ )𝑁2 3⁄ −21/3𝑁1/3 )
, compute 𝜙(𝑁) =

𝑒𝑑−1

𝑘
. 

3. Calculate 𝑝′ = gcd (
𝑒𝑑−1

𝑘
, 𝑁) 

4. For every odd integer 𝑝′ such that 1 < 𝑝′ < 𝑁, compute 𝑞′ =
𝑁

𝑝′2. 

5. Return the prime factor 𝑝 = 𝑝′ and 𝑞 = 𝑞′. 

 

Example 4.1 Suppose we are given 𝑁 =  120148413337333 and 𝑒 =  55708935964259 

fulfils the condition as strictly dictated as in Theorem 3.1. Determine 𝑁 − ((22 3⁄ +

2−1 3⁄ )𝑁2 3⁄ − 21/3𝑁1/3 )  and compute 
𝑒

𝑁−((22 3⁄ +2−1 3⁄ )𝑁2 3⁄ −21/3𝑁1/3 )
. The candidates of 

𝑘

𝑑
 

from the enumeration of the computed continued fraction expansion are as follows; 

 

[0,
1

2
,

6

13
,
13

28
,
19

41
,
32

69
,

83

179
,

862

1859
,
1807

3897
, … ] 

 

By applying the Step 2 in Algorithm 1, with the convergent 
83

179
, we obtain 
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𝜙(𝑁) =
((55708935964259)(179) − 1)

83
= 120143367922920 

Hence, by computing gcd(120143367922920, 120148413337333), then we obtain 52511 

which leads to the factorization of 𝑁 since 𝑝 = 52511 and 𝑞 =
𝑁

𝑝2 = 43573. 

 

 

5. CONCLUSIONS 

 

In conclusion, this paper presents 

new cryptanalysis of the modulus of type 

𝑁 = 𝑝2𝑞. We prove that if we use the term 

𝑁 − ((22 3⁄ + 2−1 3⁄ )𝑁2/3 − 21/3𝑁1/3)  as 

a good approximation of 𝜙(𝑁) satisfy the 

key equation 𝑒𝑑 − 𝑘𝜙(𝑁) = 1 , the 

unknown parameters 𝑘  and 𝑑  be 

recovered among the convergents of the 

continued fractions expansion 
𝑒

𝑁−((22 3⁄ +2−1 3⁄ )𝑁2 3⁄ −21/3𝑁1/3 )
 which enable 

one to obtained 𝑝  and 𝑞  in polynomial 

time. In addition, we also come up with new 

algorithm to factor 𝑁 = 𝑝2𝑞 as we show in 

Algorithm 1. Observe that the results in this 

work only consider the balanced prime 

factors for the modulus where the bit-length 

of the primes 𝑝 and 𝑞 are in the same size 

(i.e. 𝑞 < 𝑝 < 2𝑞). In the future work, we 

aim to extend our result on factoring the 

modulus with unbalanced prime factors, 

which in general be defined as 𝑞 < 𝑝 < 𝛿𝑞 

where 𝛿 > 2 . Remark that such type of 

modulus has a limited number of 

cryptanalytical from earlier and recent 

publications. Therefore, observed from the 

trend of publications related to factoring the 

modulus with unbalanced primes, there is 

an opportunity to further analysis and 

mathematical proves specifically using the 

continued fraction and its variants. 
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