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ABSTRACT An algorithm was developed by previous researcher for elliptic scalar 

multiplication (SM) on Koblitz curve where the multiplier of SM is in the form of Pseudo 𝜏-adic 

Non-Adjacent (pseudoTNAF).  PseudoTNAF of 𝑖 + 𝑗𝜏 an element of the ring Z(𝜏) where 𝑖, 𝑗 ∈  Z 

is an expansion where the digits are generated by successively dividing 𝑖 + 𝑗𝜏 by 𝜏, allowing 

remainders of −1, 0 or 1. Such a multiplier is in the form of 𝑖 + 𝑗𝜏 ≡ 𝑛 𝑚𝑜𝑑 (𝑟0 + 𝑟1𝜏) (
𝜏𝑚−1

𝜏−1
).  

In this paper, we refine some properties of the multiplier 𝑟0 + 𝑟1𝜏  from previous researchers 

focusing on even and odd situation for 𝑟0 and 𝑟1. We also propose two properties of 𝑟0 + 𝑟1𝜏  when 

𝑟0 is even and 𝑟1 is odd. As a result, the nature of  𝑖 − 𝑛 and 𝑗 are depends on the nature of 𝑟0 and 

𝑟1 when 𝑟0 is even. Whereas, the nature of  𝑖 − 𝑛 and 𝑗 are not depends on the nature of 𝑟0 and 𝑟1 

when 𝑟0  is odd. 

 

Keywords:   Pseudo 𝜏-adic Non-Adjacent Form (pseudoTNAF); scalar multiplication (SM); 

Koblitz curve      
 

 
 

                                                                                          

INTRODUCTION 

 

Elliptic curve cryptography is an approach to 

public-key cryptography based on the algebraic 

structure of Elliptic Curve (EC) over finite field. 

This system was standardized as the most secured 

system in information security. The generation of 

domain parameters is not usually done by previous 

researchers because this involves computing SM 

for an integer 𝑛 and a point 𝑃 on EC which is time-

consuming and complex to implement.  The Koblitz 

curves are special types of curves for which the 

Frobenius endomorphism can be used for 

improving the performance of computing an elliptic 

SM (Koblitz (1992)). It is defined over 

𝐹2𝑚   as  

𝐸𝑎: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 1 

where 𝑎 an element of {0,1} and 𝑃 = (𝑥, 𝑦) on the 

curve (Koblitz (1987)). The Frobenius map 

𝜏: 𝐸𝑎(𝐹2𝑚) → 𝐸𝑎(𝐹2𝑚) 

 is defined by 

𝜏(𝑥, 𝑦) = (𝑥2, 𝑦2), 𝜏(∞) = ∞ 

where ∞ is the point at infinity. The imaginary 

quadratic number 𝜏 =
𝑡+√−7

2
 satisfies the relation 

𝜏2 − 𝑡𝜏 + 2 = 0 where 𝑡 = (−1)1−𝑎. Figure 1 is 

an illustration of the SM in this set (Yunos et al. , 

2015).  
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Figure 1- An illustration of the SM on the set 𝐸𝑎(𝐹2𝑚). 

 

 

 

In the literature, there are two methods used 

to express all elements (𝑥, 𝑦) which are either in the 

form of polynomial basis or normal basis. Whereas, 

FIPS PUB 186-4 gives the bit sizes range of the 

order for basis point (𝑥, 𝑦) in the binary field of 

sizes 163, 233, 283, 409 and 571, together with the 

list of some suitable parameters for five types of 

Koblitz curves. This information is the standard 

proposed by FIPS PUB 186-4 and can be referred 

to Kerry and Gallagher (2013).  This is the fourth 

series of publications with expertise and guidelines 

adopted and promulgated under the provisions of 

the Federal Information Security Management Act 

(FISMA).  

 

The following are some definitions and lemma 

can be found in Solinas (2000); Heuberger and 

Krenn (2012); Yunos et al. (2014); Yunos et al. 

(2015a); Yunos et al. (2015b); Yunos and Mohd 

Atan (2016); Mohd Suberi et al. (2016); Ali and 

Yunos (2016) that will be used throughout this 

study.  

Definition 1. 𝑍(𝜏) is the set of polynomials in 𝜏. 

Defined  𝑍(𝜏) to be quotient ring  

𝑍(𝑥)/(𝑥2 − 𝑡𝑥 + 2𝑚) . 
 

Lemma 1. (Heuberger and Krenn (2012)) If 𝜏  is 

quadratic then (𝜏) = { 𝑟 + 𝑠𝜏: 𝑟, 𝑠 ∈ 𝑍}.  

 

Definition 2. A τ-adic non-adjacent form (also 

called 𝜏-NAF or TNAF) of nonzero �̅� in Z(𝜏)   is 

equal to  ∑ 𝑐𝑖𝜏𝑖𝑙−1
𝑖=0   where 𝑐𝑖 ∈ {−1, 0, 1} and 

𝑐𝑖𝑐𝑖+1 = 0 for all 𝑖.   If  𝑐𝑙−1 ≠ 0 then 𝑙 is said to be 

the length of 𝜏-NAF. 

 

TNAF(�̅�) in the form of ∑ 𝑐𝑖𝜏𝑖𝑙−1
𝑖=0   is an 

expansion where the digits are generated by 

successively dividing �̅�  by 𝜏, allowing remainders 

−1, 0 or 1.  
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Definition 3. A Reduced τ-adic Non-Adjacent 

Form (also called RTNAF) of nonzero �̅� in Z(𝜏) 

is ∑ 𝑐𝑖𝜏𝑖𝑙−1
𝑖=0   that is equal to 𝑛 mod 

𝜏𝑚−1 

𝜏−1
 , and where 

𝑐𝑖 ∈ {−1, 0, 1} and 𝑐𝑖𝑐𝑖+1 = 0 for all 𝑖.   If  𝑐𝑙−1 ≠
0 then 𝑙 is said to be the length of RNAF.   

     

Definition 4. A Pseudo τ-adic Non-Adjacent 

Form (also called pseudoTNAF) of nonzero �̅� 

in Z(𝜏)  is ∑ 𝑐𝑖𝜏𝑖𝑙−1
𝑖=0  that is equal to 𝑛 mod (

𝜏𝑚−1

𝜏−1
), 

and where 𝜌 ∈ 𝑍(𝜏), 𝑐𝑖 ∈ {−1, 0, 1}  and 𝑐𝑖𝑐𝑖+1 =
0 for all 𝑖. If 𝑐𝑙−1 ≠ 0 then 𝑙 is said to be the length 

of pseudoTNAF. 

 

Definition 5. Let 𝑁 ∶ ℚ(𝜏) → ℚ the rational set 

as a function of norm.  Let 𝛼 = 𝑥 + 𝑦𝜏 an element 

ℚ(𝜏). The norm of 𝛼 is 𝑁(𝛼) = 𝑥2 + 𝑡𝑥𝑦 + 2𝑦2 

where 𝑡 = (−1)(1−𝑎) and 𝑎 ∈ {0, 1}. 
 
𝜏𝑚−1 

𝜏−1
 and 𝜌 (

𝜏𝑚−1

𝜏−1
) in Definitions of 3 and 4 

respectively   can be converted into 𝑟 + 𝑠𝜏. We 

choose any integer 𝑛 from interval [1, |𝑝’|𝑁(𝑟′ +
𝑠′ 𝜏) − 1] such that 𝑟 + 𝑠𝜏 = 𝑝’(𝑟’ + 𝑠’𝜏) where 𝑝’ 
is an integer. After that, �̅� in Z(𝜏) can be generated 

from dividing an integer 𝑛 by 𝑟 + 𝑠𝜏. Lastly, the 

RTNAF(�̅�) and pseudoTNAF(�̅�) in the form of 

∑ 𝑐𝑖𝜏
𝑖𝑙−1

𝑖=0  are expansions where the digits are 

generated by successively dividing �̅� by 𝜏, allowing 

remainders −1, 0 or 1.  
 

Definition 6. Let 𝑃 and 𝑄 be the point on 

Koblitz curve for 𝑃 = (𝑥, 𝑦).  Scalar multiplication 

is the repeated addition of a point along the curve 

up to 𝑛 times and denoted as 𝑛𝑃 = 𝑃 + 𝑃 + ⋯ + 𝑃 

for some scalar 𝑛 such that 𝑛𝑃 = 𝑄. 
 

Definition 7. Lucas sequence are defined as  

𝑈0 = 0, 𝑈1 = 1 and 

𝑈𝑖 = 𝑡𝑈𝑖−1 − 2𝑈𝑖−2 for     𝑖 ≥ 2. 
 

In this paper, we gather all the properties for 𝑟0 +

𝑟1𝜏 in 𝑖 + 𝑗𝜏 ≡ 𝑛 𝑚𝑜𝑑 (𝑟0 + 𝑟1𝜏) (
𝜏𝑚−1

𝜏−1
) .   In 

Section 2, we give the previous study developed by 

some earlier researchers.  Next, in Section 3, we 

begin with restating all the seventh properties 𝑟0 

and 𝑟1 involving an even and odd situation that have 

been proposed by Yunos et al. (2014) and Mohd 

Suberi et al. (2016).  We introduced two properties 

of such  𝑟0 and 𝑟1. These all nine properties will 

help us to understand the nature of 𝑖 and 𝑗 when 

using  𝑖 + 𝑗𝜏 ≡ 𝑛 𝑚𝑜𝑑 (𝑟0 + 𝑟1𝜏) (
𝜏𝑚−1

𝜏−1
).    

 

 

LITERATURE REVIEW 

 

 

Solinas (1997) was mention that the 

Hamming weight of non-adjacent form (NAF) of 

integer 𝑛 satisfies  ≈
1

3
log2 𝑛. Therefore, the 

average cost using addition–subtraction method is 

~𝑚 doubles and ~
𝑚

3
  additions, for a total of ~

4𝑚

3
 

elliptic operations. He improved this method by  

introducing  the expression 𝑛 in 𝑍(𝜏) of the form 𝜏-

adic non-adjacent (TNAF).  That is, the digits of 

expansions of 𝑛 are generated by successively 

dividing 𝑛 by 𝜏, allowing remainders of −1, 0 and 

1. The average Hamming weight of the TNAF for 

the integer 𝑛 satisfies ≈
2

3
log2 𝑛. This is twice as 

large as the Hamming weight of an ordinary NAF. 

Replacing the ordinary NAF by TNAF will 

eliminate the elliptic doublings and double the 

number of elliptic additions. The algorithm 

developed by him is one of the most efficient 

algorithms to compute the SM on Koblitz curve. 

The average number of elliptic operation is ~
𝑚

3
. 

Solinas (2000) was able to maintain this situation 

by replacing an integer 𝑛 in the form of TNAF with 

an expansion in the form of reduced TNAF 

(RTNAF). The reduction concept in the field of 

rational integer has been discussed by Solinas 

(2000). To avoid SM towards to infinity, the residue 

𝑛 mod (𝑟+s𝜏) must have a norm as small as 

possible i.e. 𝑁(𝑛) is less than or equal to 

 
4

7
𝑁(𝑟+s𝜏 ). An algorithm for division in Z(τ) (i.e. 

the polynomial ring in Z(τ)) with integer 

coefficients) in Solinas (1997) provides detail 

reduction steps for 𝑛 mod (𝑟 + 𝑠 𝜏). This algorithm 

has been used by Solinas (2000) in the reduction of 

𝑛 mod 
𝜏𝑚−1

𝜏−1
. Since the average Hamming weight 

among reduced TNAF is ~
𝑚

3
. Replacing TNAF by 

reduced TNAF can reduced the length of expansion 

of 𝑛 about half as long. Since the Hamming weight 

of TNAF is ≈
2

3
log2 𝑛, then the reduced TNAF has 

about half the weight  of TNAF. Since, the 
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Hamming weight of NAF satisfies ≈
1

3
log2 𝑛  then 

the Hamming weight of  reduced TNAF is about 

equal to that of NAF. Thus, replacing NAF by 

reduced TNAF eliminates the elliptic doubles and 

keeps roughly constant the number of elliptic 

addition. Reduced TNAF can be used in place of 

TNAF. The properties of 𝑛 mod (𝑟 + 𝑠 𝜏) for SM 

on different types of curves have also been 

developed by some researchers such as Avanzi et 

al. (2007); Blake et al. (2008); Avanzi et al. (2010); 

Heuberger (2010); Hakuta et al. (2010); 

Karthikeyan et al. (2011); Heuberger and Krenn  

(2011, 2012); Yunos et al. (2014); Yunos et al. 

(2015a, 2015b); Yunos and Mohd Atan (2016), 

Mohd Suberi et al. (2016, 2018); Ali and Yunos 

(2016) and Ali et al. (2017).  

 

  Pseudo 𝜏-adic Non-adjacent Form 

(pseudoTNAF) of �̅� where  �̅� ≡ 𝑛 mod (𝑟0 +

𝑟1𝜏)
𝜏𝑚−1

𝜏−1
 for SM on Koblitz Curve was developed 

by Yunos et al. (2014). It has been proven that 

pseudoTNAF equivalent to the TNAF and RTNAF. 

Reducing the operating cost of the SM by using 

pseudoTNAF for an  element in Z(𝜏) can eliminate 

the elliptic doublings in the SM method on Koblitz 

curve, and double the number of elliptic additions. 

This is due to the costs for implementing the 

Frobenius map 𝜏 is basically free. Therefore, the 

cost only depends on the average of the number of 

non-zero coefficients among pseudoTNAF’s 

expansion. To make the reduction of 𝑛 become 

easier, Yunos et al. (2014) implement Lucas 

sequence in transforming element from (𝑟0 +

𝑟1𝜏)
𝜏𝑚−1

𝜏−1
 to 𝑟 + 𝑠 𝜏. Yunos et al. (2015a) proved 

that the number of distinct points in mod (𝑟 + 𝑠 𝜏) 

can be obtained from formula |𝑝’|𝑁(𝑟′ + 𝑠′ 𝜏) such 

that 𝑟 + 𝑠𝜏 = 𝑝’(𝑟’ + 𝑠’𝜏) where 𝑝’ is an integer. 

This is reinforced with Proposition 75 in Solinas 

(1997) which stated that the formula is exactly 

N(𝑟 + 𝑠𝜏). Combining the condition of N(𝑛) with 

this guideline, Yunos et al. (2015a) proposed an 

algorithm for finding all points in mod 𝑟 + 𝑠𝜏. As a 

result, the estimation cost of carrying out the 

pseudoTNAF method is about (
1

3
+

𝑜(1)) (𝑙𝑜𝑔2𝑁(𝑟0 + 𝑟1𝜏) + 𝑚 + 𝑎) number of 

additions. This estimation cost based on average 

density of the Hamming weights of expansion. 

Each hamming weight gives one additional in cost 

calculation. It was described in Yunos et al. (2016) 

which was referred to Table 1 which gives the 

comparison of expansion length (𝑙), the number of 

Hamming weight (HW) and the density of 

pseudoTNAF(�̅�) for 𝑛 =
7922816251426433759354950350, 𝑎 = 0, 

𝑚 = 163, with different 𝑟0 + 𝑟1𝜏. 

 

 

Table 1- Comparison of Density for Different Type 

of r0 + r1τ 

The type of expansion  𝒍 HW Density 

�̅� ≡ 𝑛 mod (2 + 𝜏)
𝜏163−1

𝜏−1
 163 53 0.32515 

�̅� ≡ 𝑛 mod 4
𝜏163−1

𝜏−1
 164 28 0.17073 

�̅� ≡ 𝑛 mod (1 − 𝜏)
𝜏163−1

𝜏−1
 157 28 0.17834 

�̅� ≡ 𝑛 mod 
𝜏163−1

𝜏−1
  157 28 0.17834 

�̅� ≡ 𝑛 mod (𝜏 − 1)
𝜏163−1

𝜏−1
 157 28 0.17834 

 

 

From Table 1, there is sometime the density value 

of pseudoTNAF(�̅�) becomes lower or higher or 

equivalent to RTNAF(�̅�) and TNAF(�̅�).  This 

situation is affected by the value of 𝑟0 + 𝑟1𝜏.   We 

found that the density of nonzero coefficients in 

pseudoTNAF   expansion is similar to TNAF and 

RTNAF when 𝑟0 + 𝑟1𝜏 = 1 − 𝜏.  For 𝑟0 + 𝑟1𝜏 = 4, 

the density of such pseudoTNAF is less four 

percents than the others although the size of it’s 

expansion a bit longer. Meanwhile, the density 

becomes higher when  𝑟0 + 𝑟1𝜏 = 2 + 𝜏.  

Therefore, the choice of  𝑟0 + 𝑟1𝜏 is important to 

reduce the operating cost of scalar multiplication. 

This method (with an appropriate 𝑟0 + 𝑟1𝜏) is four 

percents more effective than the method of 

selecting TNAF and RTNAF.  To estimate this cost 

more accurately, Ali and Yunos (2016) and Ali et 

al. (2017) suggested the use of total, maximum and 

minimum norm formulas for TNAF that was 

occurring among of all elements in Z(τ). Whereas 

the selection of seven types of 𝑟0 + 𝑟1𝜏 involving 

even and odd situation for 𝑟0  and 𝑟1  as described 

in Yunos et al. (2014) and Mohd Suberi et al. (2016) 

should be considered. It can influence any attackers 

to guess an original message. In this study, we 

investigate some more properties in the similar 
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situation. Furthermore, these properties can be 

scrutinized the effect of choosing 𝑟0 + 𝑟1𝜏  which is 

related to the concept of congruence modulo (𝑟0 +

𝑟1𝜏 ) (
𝜏𝑚−1

𝜏−1
).  

  

 

RESULTS AND DISCUSSION 

 

 

Before we proceed to the new cases of  𝑟0 + 𝑟1𝜏, we 

rephrase back the seventh properties that have been 

developed by Yunos et al. (2014) and Mohd Suberi 

et al. (2016) as follows.  

 

Theorem 3.10 

Let 𝑟0 + 𝑟1𝜏 ∈ 𝑍(𝜏) and  𝑟0 is even. If (𝑟0  +
𝑟1𝜏)|(𝑟 + 𝑠𝜏), then 𝑟 is even.   

 

Theorem 3.11 

Let 𝑟0 + 𝑟1𝜏 ∈ 𝑍(𝜏) and 𝑟0 and 𝑟1 are even. If  (𝑟0 +
𝑟1𝜏)|(𝑟 + 𝑠𝜏), then 𝑟 and 𝑠 are even. 

Theorem 3.12  If 𝑟0 is even, 𝑟1, 𝑐 and 𝑑 are odd, 

then (𝑟0 + 𝑟1𝜏)(𝑐 + 𝑑𝜏) = 𝑟 + 𝑠𝜏 where 𝑟 and 𝑠 

are even. 

 

 

Theorem 3.13  If 𝑟0 and 𝑑 are even, 𝑟1 and 𝑐 are 

odd, then (𝑟0 + 𝑟1𝜏)(𝑐 + 𝑑𝜏) = 𝑟 + 𝑠𝜏 where 𝑟 is 

even and 𝑠 is odd. 

 

Theorem 3.14   If 𝑟0, 𝑐 and 𝑑 are odd and 𝑟1 is even, 

then (𝑟0 + 𝑟1𝜏)(𝑐 + 𝑑𝜏) = 𝑟 + 𝑠𝜏 where 𝑟 and 𝑠 

are odd. 

 

Theorem 3.15  If 𝑟0, 𝑟1 and 𝑐 are odd, then 

(𝑟0 + 𝑟1𝜏)(𝑐 + 𝑑𝜏) = 𝑟 + 𝑠𝜏 where 𝑟 and 𝑠 are 

odd. 

 

Theorem 3.16   If 𝑟0 and 𝑐 are odd and 𝑟1 and 𝑑 are 

even, then (𝑟0 + 𝑟1𝜏)(𝑐 + 𝑑𝜏) = 𝑟 + 𝑠𝜏 where 𝑟 is 

odd and 𝑠 is even. 

 

Now, we proceed with two more properties to 

complete all possible combination of 𝑟0, 𝑟1, 𝑐 and d 

involving even and odd cases as follows. 
 

Theorem 3.17     If 𝑟0, 𝑐 and 𝑑 are even and 𝑟1  is 

odd, then (𝑟0 + 𝑟1𝜏)(𝑐 + 𝑑𝜏) = 𝑟 + 𝑠𝜏 where 𝑟 and 

𝑠 are even. 

Proof 

 

This theorem has been proven from Theorem 3.11 

since the multiplication of elements in Z(τ) satisfied 

the commutativity property.  

 

Theorem 3.18     If 𝑟0 and 𝑐 are even and 𝑟1  and 𝑑  

is odd, then (𝑟0 + 𝑟1𝜏)(𝑐 + 𝑑𝜏) = 𝑟 + 𝑠𝜏 where 𝑟 

is even and 𝑠 is odd. 

Proof . 

Let 𝑟0 = 2𝑘1, 𝑟1 = 2𝑘2 + 1, 𝑐 = 2𝑙1 and 𝑑 =
2𝑙2 + 1 with 𝑘1, 𝑘2, 𝑙1, 𝑙2 ∈ 𝑍. 

(𝑟0 + 𝑟1𝜏)(𝑐 + 𝑑𝜏)
= (2𝑘1 + (2𝑘2 + 1)𝜏)(2𝑙1

+ (2𝑙2 + 1)𝜏) 
= 4𝑘1𝑙1 + 4𝑘1𝑙2𝜏 + 2𝑘1𝜏

+ 2𝑘2𝑙1𝜏 + 2𝑘2𝑙2𝜏2 + 2𝑘2𝜏2

+ 2𝑙1𝜏 + 2𝑙2𝜏2 + 𝜏2 
= 2(2𝑘1𝑙1)

+ 2(2𝑘1𝑙2 + 𝑘1 + 𝑘2𝑙1 + 𝑙1)𝜏
+ (2𝑘2𝑙2 + 2𝑘2 + 2𝑙2 + 1)(𝑡𝜏
− 2) 

= 2(2𝑘1𝑙1 − 2𝑘2𝑙2 − 2𝑘2

− 2𝑙2 − 1)
+ (2(2𝑘1𝑙2 + 𝑘1 + 𝑘2𝑙1 + 𝑙1

+ 𝑘2𝑙2𝑡 + 𝑘2𝑡 + 𝑙2𝑡) + 𝑡)𝜏 
 

Let 𝑎 = 2𝑘1𝑙1 − 2𝑘2𝑙2 − 2𝑘2 − 2𝑙2 − 1 and 𝑏 =
2𝑘1𝑙2 + 𝑘1 + 𝑘2𝑙1 + 𝑙1 + 𝑘2𝑙2𝑡 + 𝑘2𝑡 + 𝑙2𝑡.  

Therefore 𝑟 = 2𝑎 which is even and 𝑠 = 2𝑏 + 𝑡 

where 𝑡 can be either 1 or −1. 

 

As a result, we summarized the outcome of 𝑟 and 𝑠 

from Theorems 3.10-3.18 with different 

combinations of   𝑟0, 𝑟1, 𝑐 and 𝑑 as in Diagrams 1 

and 2. This shows all the possible of 𝑟1, 𝑐 and 

𝑑 involving even and odd numbers when 𝑟0 is even 

and 𝑟0 is odd respectively. Whereas  𝑟 and 𝑠 are the 

product for the multiplication 𝑟0 + 𝑟1𝜏 with 𝑐 + 𝑑𝜏. 
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Diagram 1- All combination of 𝑟1, 𝑐, 𝑑, r and s 

when 𝑟0 is even 

 

 

  
 

Diagram 2- All combination of 𝑟1, 𝑐, 𝑑, r and s 

when 𝑟0 is odd. 

 

 

From Diagrams 1 and 2, we conclude the result as 

follows. 

 

1.  If 𝑟0 is even, then (𝑟0 + 𝑟1𝜏)|(𝑟 + 𝑠𝜏) where 𝑟 

is even.  

 

2. If both 𝑟0 and 𝑟1 are even, then (𝑟0 + 𝑟1𝜏)|(𝑟 +
𝑠𝜏) where both 𝑟 and 𝑠 are also even. 

 

3. If 𝑟0 even and 𝑟1 odd, then (𝑟0 + 𝑟1𝜏)|(𝑟 + 𝑠𝜏) 

where     r is even and 𝑠 is any integer. 

 

4. In all situation when 𝑟0  is odd, we are not able to 

guess the nature of r and s such that (𝑟0 +
𝑟1𝜏)|(𝑟 + 𝑠𝜏). 

 

The four situations mentioned above influence the 

multiplier 𝑖 + 𝑗𝜏 in a cryptographic system where 

𝑖 + 𝑗𝜏 ≡ 𝑛 mod (𝑟+s𝜏)  especially when 𝑖 + 𝑗𝜏 ≡

𝑛 𝑚𝑜𝑑(𝑟0 + 𝑟1𝜏) (
𝜏𝑚−1

𝜏−1
).  Moreover, the following 

prediction can be made. 

(i) Suppose (𝑟0 + 𝑟1𝜏) (
𝜏𝑚−1

𝜏−1
) = 𝑟 + 𝑠𝜏.  The 

nature of   r and s are depends on the nature of 

𝑟0 and 𝑟1  when 𝑟0 is even. 

(ii) The nature of  𝑖 − 𝑛 and 𝑗 are depends on the 

nature of 𝑟0 and 𝑟1 when 𝑟0 is even. This is an 

implication of Theorems 3.10-3.13, 3.17 and 

3.18.  

(iii)The nature of  𝑖 − 𝑛 and 𝑗 are not depends on 

the nature of 𝑟0 and 𝑟1 when 𝑟0  is odd. This is 

an implication of Theorems 3.14-3.16.  

 

 

The description of the argument number (ii) is in 

the following example. 

 

Example 1. 

Consider 𝑟0 = 0 and 𝑟1 = 2 such that 𝑟+s𝜏 =

2𝜏
𝜏3−1

𝜏−1
. From Theorem 3.10, if 𝑟0 even, then 𝑟 is 

even. We can verify that the expression 2𝜏
𝜏3−1

𝜏−1
 is 

transforms into −8 + 2𝜏.  Let us choose randomly 

an integer 𝑛 = 13 with 4 bits sizes from an interval 

[1, 2 𝑁(−4 + 𝜏) − 1] as the multiplier of scalar 

multiplication. Now, we have 13 𝑚𝑜𝑑 − 8 + 2𝜏.  
Integer 13 can be converted to 𝑖 + 𝑗𝜏 = 1 − 4𝜏 via 

division process in 𝑍(𝜏). It is proven that 𝑟 = −8 is 

even then 𝑖 − 𝑛 = −12 is also even from Theorem 

3.10. Dividing 1 − 4𝜏 by 𝜏 produces 

pseudoTNAF(1 − 4𝜏)  is equals 

[1,0,0, −1,0, 0, −1] = 1 − τ3 − τ6 (refer this 

calculation in Appendix A). We found that the first 

coefficient for this expansion is beginning with 1 

and after that is 0. This pattern refers to Proposition 

A2 in Appendix A (Yunos et al. (2018). We can 

𝑠𝑟𝑑𝑐𝑟1𝑟0

E

E

E
E E E

O E E

O
E E E

O E E

O

E
E E E

O E O

O
E E O

O E E

𝑠𝑟𝑑𝑐𝑟1𝑟0

O

E

E
E E E

O E O

O
E O E

O O O

O

E
E E E

O E E

O
E O O

O O O
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take advantage from this proposition that  𝑖 + 𝑗𝜏 =
1 − 4𝜏 is follows the pattern of 5 + 4𝑘 where the 

first coefficient of pseudoTNAF(1 − 4𝜏) is 1. In 

this example the exact values of 𝑖 and 𝑗 are easily 

can be found because we know the 𝑛 is equal to 13. 

Moreover, the norm of −8 + 2𝜏 is small and 

therefore we can guess the exact values of 𝑖 and 𝑗  

by using Algorithms 4.2 or 4.3 in Yunos et al. 

(2015b).   

 

 

CONCLUSION 

 

 

From Theorems 3.10-3.18, we conclude 

that the nature of  𝑖 − 𝑛 and 𝑗 in 𝑖 + 𝑗𝜏 ≡

𝑛 𝑚𝑜𝑑 (𝑟0 + 𝑟1𝜏)
𝜏𝑚−1

𝜏−1
 are depends on the nature of 

𝑟0 and 𝑟1 when 𝑟0 is even. Whereas, the nature of  

𝑖 − 𝑛 and 𝑗 are not depends on the nature of 𝑟0 and 

𝑟1 when 𝑟0  is odd. The chosen of 𝑟0 when it is even 

should be carefully considered for cryptographic 

proposes for the system that uses pseudoTNAF 

expansion especially when the norm of (𝑟0 +

𝑟1𝜏) (
𝜏𝑚−1

𝜏−1
) is small.   
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APPENDIX A 

 

 
 

Example A1. 

 
Find pseudoTNAF of 1 − 4𝜏     as follows. 
Consider �̅� = 1 − 4𝜏    and  𝜏̅ = 1 − 𝜏 is the 

conjugate of τ.  First, 𝜏 ∙ �̅� = 2 is shown.   

𝜏 ∙ 𝜏̅ = 𝜏(1 − 𝜏) 

 = −𝜏2 + 𝜏 

         = −𝜏 + 2 + 𝜏 

         = 2. 

Next, the next steps in obtaining 

pseudoTNAF(1 − 4𝜏) are shown. 

 

Step 1:  Since 1 − 4𝜏  is not divisible by 𝜏, we 

choose 𝑐0 = 1.  Therefore the next coefficient 

must be 0. That is 𝑐1 = 0. 

1 − 4𝜏 − 1

𝜏
= −4. 

Therefore, pseudoTNAF(1 − 4𝜏 ) =

[1, 𝑐1, 𝑐2, … , 𝑐𝑙−2, 𝑐𝑙−1]. 
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Step 2:  Since −4 is divisible by 𝜏, then c1 = 0. 

−4

𝜏
=

−4

𝜏
∙

�̅�

�̅�
=

−4 ⋅ (1 − 𝜏)

2
= −2 + 2𝜏. 

 

Then, pseudoTNAF(1 − 4𝜏 ) =

[1, 0, 𝑐2, … , 𝑐𝑙−2, 𝑐𝑙−1]. 

Step 3: −2 + 2𝜏 is divisible by 𝜏.  Therefore, 𝑐2 

= 0. 

 
−2 + 2𝜏

𝜏
=

−2

𝜏
∙

�̅�

�̅�
+ 2 =

−2 ⋅ (1 − 𝜏)

2
+ 2

= 1 + 𝜏 

Therefore, pseudoTNAF(1 − 4𝜏 ) =

[1,0,0, 𝑐3, 𝑐4, … , 𝑐𝑙−2, 𝑐𝑙−1]. 

 

Step 4: Since 1 + 𝜏 is not divisible by 𝜏 then 𝑐3 is 

−1. 

1 + 𝜏 + 1

𝜏
=

2 + 𝜏

𝜏
=

2

𝜏
∙

�̅�

�̅�
+ 1 = 2 − 𝜏. 

Then, pseudoTNAF(1 − 4𝜏 ) =

[1,0,0, −1, 𝑐4, … , 𝑐𝑙−2, 𝑐𝑙−1]. 

Step 5:  2 − 𝜏 is not divisible by 𝜏.  Then, we take 

𝑐4 = 0.  

2 − 𝜏

𝜏
=

2

𝜏
− 1 = −𝜏. 

Then, pseudoTNAF(1 − 4𝜏) =

[1,0,0, −1,0, 𝑐5, … , 𝑐𝑙−2, 𝑐𝑙−1]. 

 

Step 6:  Since −𝜏 is divisible by 𝜏 then 𝑐5 = 0. 

−𝜏

𝜏
=

−𝜏

𝜏
∙

�̅�

�̅�
= −1. 

Then, pseudoTNAF(1 − 4𝜏) =

[1,0,0, −1,0, 0, 𝑐6, … , 𝑐𝑙−2, 𝑐𝑙−1]. 

Step 7:  Since −1 is not divisible by 𝜏 then 𝑐6 =

−1. 

−1 + 1

𝜏
= 0. 

Lastly, pseudoTNAF(1 − 4𝜏 ) =
[1,0,0, −1,0, 0, −1] = 1 − 𝜏3 − 𝜏6.  It has 7 digits 

in size and 4 of Hamming weights.  
 

 

We used point 𝑃 = (𝑥2, 𝑥 + 1) in the form of 

polynomial basis which is satisfying 𝐸1. Choose 

irreducible polynomial 𝑥3 + 𝑥 + 1, then we get 

the output of scalar multiplication is 𝑄 = (𝑥, 𝑥2 +
𝑥 + 1). The algorithm for scalar multiplication for 

pseudoTNAF can be refer to Yunos et al. (2016) 
 

Proposition A2. (Yunos et al. , 2018)   

Let 𝑘 be a non-negative integer and TNAF(1)=
[1]. The TNAF expansion of 5 + 4𝑘 is equal to 

[1, 𝑐1, 𝑐2, … , 𝑐𝑙−1 ] where 𝑐𝑖 ∈ {−1, 0, 1},                     

𝑖 = 1,2, … , 𝑙 − 1 and 𝑙 is the length of the 

expansion. 

 

Proof.   By Lemma 1.1, 𝛼 = 𝑐 + 𝑑𝜏 where 𝑐 =
5 + 4𝑘 and 𝑑 = 0. Then, 

5 + 4𝑘

𝜏
=

5 + 4𝑘

2
𝑡 −

5 + 4𝑘

2
𝜏 ∉   𝑍 (𝜏). 

We choose 𝑐0 = 1, such that 𝑐𝑖𝑐𝑖+1 = 0. Thus, 
5 − 1 + 4𝑘

𝜏
=

4 + 4𝑘

𝜏
 

=
2(2 + 2𝑛)

𝜏
 

=
2𝑡(2 + 2𝑘)

2
−

2(1 + 𝑘)

2
𝜏 

= 2𝑡(1 + 𝑘) − (1 + 𝑘)𝜏 ∈ 𝑍(𝜏). 
 

 

Thus, the first remainder, 𝑐0  is 1 so that 5 + 4𝑘 is 

divisible by 𝜏. Therefore, TNAF expansion of 5 +
4𝑘 is [1, 𝑐1, 𝑐2, … , 𝑐𝑙−1 ] where 𝑐𝑖 ∈ {−1, 0, 1} for 

𝑖 = 1,2, … , 𝑙 − 1.  

 

 

 

 

 

 


