
Malaysian Journal Of Science 38(3): 24-33 (December 2019) 

24 

 

STRONG (WEAK) VV-DOMINATING SET OF A GRAPH 

 

Sayinath Udupa1a, R. S. Bhat*2a 

 
a,Department of Mathematics, Manipal Institute of Technology, A Constituent unit of Manipal Academy Of  Higher 

Education, Manipal, 576104, India. Email: sayinath.udupa@manipal.edu1a ;  rs.bhat@manipal.edu2a 

*Corresponding author: rs.bhat@manipal.edu  

Received: 2nd Feb 2018     Accepted: 24th Jul 2019     Published: 31st Dec 2019 

DOI: https://doi.org/10.22452/mjs.vol38no3.3 

  

 

ABSTRACT Two vertices 𝑢, 𝑤 ∈ 𝑉  vv-dominate each other if they incident on the same block. 

A vertex 𝑢 ∈ 𝑉 strongly vv-dominates a vertex 𝑤 ∈ 𝑉 if u and w, vv-dominate each other and 

𝑑𝑣𝑣(𝑢) ≥ 𝑑𝑣𝑣(𝑤).  A set of vertices is said to be strong vv-dominating set if each vertex outside 

the set is strongly vv-dominated by at least one vertex inside the set. The strong vv-domination 

number γ𝑠𝑣𝑣(𝐺) is the order of the minimum strong vv-dominating set of G. Similarly weak vv-

domination number γ𝑤𝑣𝑣(𝐺) is defined. We investigate some relationship between these 

parameters and obtain Gallai’s theorem type results. Several upper and lower bounds are 

established. In addition, we characterize the graphs attaining some of these bounds. 

 

Keywords: Strong (weak) vv-dominating sets, Strong (weak) vv-full sets. 

Mathematics Subject Classification: 05C69 

 

 

1. INTRODUCTION 

 

 For notations and terminologies refer 

(Harary, 1969; West, 1996). Let G be a graph 

of order p and size q. The set of vertices is 

said to be an independent set if no two 

vertices in the set are adjacent. Then the 

maximum order of the independent set is 

called independence number 𝛽0(𝐺). If a 

vertex v is incident with an edge x then we 

say that v and x cover each other. The 

minimum number of vertices required to 

cover all the edges of G is called vertex 

covering number 𝛼0(𝐺). These two 

parameters are related by  𝛼0(𝐺) + 𝛽0(𝐺) =
𝑝 which is now referred as classical Gallai's 

Theorem (Gallai, 1959).  Two vertices are 

said to dominate each other if they are 

adjacent. A set of vertices is a dominating set 

if each vertex outside the set is dominated by 

at least one vertex inside the set. Then the 

order of the minimum dominating set is 

called as domination number 𝛾(𝐺). Similarly 

edge domination number 𝛾′(𝐺) is defined. 

The domination number is a well studied 

parameter in literature and for a survey refer 

(Berge, 1962; Haynes et al., 1998). 

Sampathkumar and Pushpa Latha 

(Sampathkumar et al., 1996) introduced 

strong (weak) dominating sets. Let G be a 

graph and 𝑢1𝑢2 ∈ 𝐸. Then 𝑢1 strongly 

dominates 𝑢2 if deg (𝑢1) ≥ deg (𝑢2).  A set 

of vertices is said to be strong dominating set 

(sd-set) if each vertex outside the set is 

strongly dominated by at least one vertex 

inside the set. The order of a minimum sd-set 

of 𝐺 is called strong domination number 

𝛾𝑠(𝐺). The strong domination is later studied 
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in (Rautenbach , 1998 ; Hattingh et al., 1998; 

Henning , 1998). Similar to strong (weak) 

domination S. S. Kamath and R. S. Bhat 

(Kamath, 2007) studied strong (weak) 

independent sets.  A vertex 𝑢 ∈ 𝑉 is a 

cutvertex if 𝐺 − 𝑢 is disconnected. A graph 

which has no cutvertex is called non-

separable. A maximal non-separable 

subgraph is a block of 𝐺. Let B(G) and C(G) 

respectively denote the set of all blocks and 

cutvertices of G. Let m and n denote the 

number of blocks and cutvertices of G. If a 

block 𝑏 ∈ 𝐵(𝐺) contains a cutvertex 𝑐 ∈
𝐶(𝐺) then we say that b and c incident to each 

other. Any two blocks in the graph are said to 

be adjacent if they share a vertex in common. 

On the other hand, any two cutvertices are 

adjacent if they incident on the same block. 

P. G. Bhat and R. S. Bhat (Bhat et al., 2013) 

defined vv-dominating sets. Two vertices 

𝑢1, 𝑢2 ∈ 𝑉 are vv-adjacent if they incident on 

the same block. Then vv-degree of a vertex 

w, 𝑑𝑣𝑣(𝑤) is the number of vertices vv-

adjacent to w. Two vertices 𝑢1 and 𝑢2 are 

said to vv-dominate each other if they are vv-

adjacent. A set of vertices is called as the vv-

dominating set (VVD-set) if each vertex 

outside the set is vv-dominated by at least one 

vertex inside set. Then the order of minimum 

VVD-set is called vv-domination number 

γ𝑣𝑣(𝐺). A set of vertices is said to be vv-full 

if each vertex in the set vv-dominates at least 

one vertex outside the set. Then the order of 

the maximum vv-full set of the graph G is 

called vv-full number 𝑓𝑣𝑣(𝐺). 
 

 

2. STRONG VV-DEGREE AND 

WEAK VV-DEGREE OF A 

VERTEX 

 

 A vertex 𝑢 ∈ 𝑉 strongly (weakly) vv-

dominates a vertex 𝑤 ∈ 𝑉 if u and w vv-

dominate each other and 𝑑𝑣𝑣(𝑢) ≥

𝑑𝑣𝑣(𝑤) (𝑑𝑣𝑣(𝑢) ≤ 𝑑𝑣𝑣(𝑤)). Strong (weak) 

vv-degree of a vertex u, denoted as 𝑑𝑠𝑣𝑣(𝑢) 

(denoted as 𝑑𝑤𝑣𝑣(𝑢)) is the number of 

vertices strongly (weakly) vv-dominated by 

the vertex u. A vertex 𝑢 ∈ 𝑉 regularly vv-

dominates a vertex 𝑤 ∈ 𝑉 if u and w, vv-

dominate each other and 𝑑𝑣𝑣(𝑢) = 𝑑𝑣𝑣(𝑤). 

Regular vv-degree of the vertex u, denoted as 

𝑑𝑟𝑣𝑣(𝑢) is the number of vertices regularly 

vv-dominated by the vertex u. 

 

Example 2.1: In the Figure 1, the first, 

second and third elements of a vertex label 

represent strong vv-degree, weak vv-degree 

and regular vv-degree of the corresponding 

vertices respectively. 

 

 

Figure 1. Strong vv-degree, weak vv-degree and regular vv-degree of a vertex. 
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Proposition 2.1: Let G be any graph and  𝑢 ∈ 𝑉, then 

 

𝑑𝑣𝑣(𝑢) = 𝑑𝑠𝑣𝑣(𝑢) + 𝑑𝑤𝑣𝑣(𝑢) − 𝑑𝑟𝑣𝑣(𝑢) 

 

Proof: For any vertex 𝑢 ∈ 𝑉, Let 𝐴 = number 

of vertices vv-dominated by u, 𝑆 =number of 

vertices strongly vv-dominated by u, 𝑊 = 

number of vertices weakly vv-dominated by 

u and 𝑅 = number of vertices regularly vv-

dominated by u. We observe that 𝐴 = 𝑆 ∪ 𝑊, 

𝑅 = 𝑆 ∩ 𝑊. Therefore  𝑑𝑣𝑣(𝑢) = |𝐴| =
|𝑊 ∪ 𝑆| = |𝑊| + |𝑆| − |𝑊 ∩ 𝑆| =

𝑑𝑤𝑣𝑣(𝑢) + 𝑑𝑠𝑣𝑣(𝑢) − 𝑑𝑟𝑣𝑣(𝑢). 
 

 

3. VV-STRONG NUMBER, VV-

WEAK NUMBER, VV-

BALANCED AND VV-

REGULAR NUMBER 

 

 A vertex 𝑢 ∈ 𝑉 is vv-strong (vv-

weak) if 𝑑𝑣𝑣(𝑢) ≥ 𝑑𝑣𝑣(𝑤) (𝑑𝑣𝑣(𝑢) ≤

𝑑𝑣𝑣(𝑤) )  for every w which is vv-adjacent to 

u. A vertex 𝑢 ∈ 𝑉 is vv-balanced if it is 

neither vv-strong nor vv-weak. A vertex 𝑢 ∈

𝑉 is vv-regular if it is both vv-strong and vv-

weak. A set 𝐷 ⊆ 𝑉 is said to be vv-strong set, 

vv-weak set, vv-balanced set and vv-regular 

set of G if each vertex in D is vv-strong, vv-

weak, vv-balanced and vv-regular vertex of 

G respectively. The vv-strong number 𝑠𝑣𝑣 =

 𝑠𝑣𝑣(𝐺), the vv-weak number 𝑤𝑣𝑣 =

 𝑤𝑣𝑣(𝐺), the vv-balanced number 𝑏𝑣𝑣 =

 𝑏𝑣𝑣(𝐺),  and vv-regular number 𝑟𝑣𝑣 =

 𝑟𝑣𝑣(𝐺) is the order of a vv-strong, vv-weak, 

vv-balanced and vv-regular set of G 

respectively.  A vertex 𝑢 ∈ 𝑉 is strictly vv-

strong (strictly vv-weak) if 𝑑𝑣𝑣(𝑢) >

𝑑𝑣𝑣(𝑤) (𝑑𝑣𝑣(𝑢) < 𝑑𝑣𝑣(𝑤) ) for every w vv-

adjacent to u.

 

Proposition 3.1: Let 𝐺 be any graph with p vertices, then 

 

𝑠𝑣𝑣(𝐺) + 𝑤𝑣𝑣(𝐺) + 𝑏𝑣𝑣(𝐺) − 𝑟𝑣𝑣(𝐺) = 𝑝 

 

Proof: Let G be the graph with p vertices. Let 

𝑆𝑣𝑣 be the vv-strong set, 𝑊𝑣𝑣 be the vv-weak 

set, 𝐵𝑣𝑣 be the vv-balanced set and 𝑅𝑣𝑣 be the 

vv-regular set. We have 𝑆𝑣𝑣 ∩ 𝑊𝑣𝑣 = 𝑅𝑣𝑣 by 

definition. Since any vv-balanced vertex is 

neither vv-strong nor vv-weak, therefore it 

cannot be either in 𝑆𝑣𝑣 or in 𝑊𝑣𝑣. Therefore 

(𝑆𝑣𝑣 ∪ 𝑊𝑣𝑣) ∩ 𝐵𝑣𝑣 = 𝜙.  Also we have 𝑉 =

(𝑆𝑣𝑣 ∪ 𝑊𝑣𝑣) ∪ 𝐵𝑣𝑣. Then |𝑉| = 𝑝 = |𝑆𝑣𝑣 ∪

𝑊𝑣𝑣| + |𝐵𝑣𝑣| = |𝑆𝑣𝑣| + |𝑊𝑣𝑣| − |𝑆𝑣𝑣 ∩

𝑊𝑣𝑣| + |𝐵𝑣𝑣| = 𝑠𝑣𝑣(𝐺) + 𝑤𝑣𝑣(𝐺) −

𝑟𝑣𝑣(𝐺) + 𝑏𝑣𝑣(𝐺). 
 

Proposition 3.2: For any graph  𝐺 = (𝑉, 𝐸) with vertex 𝑢 ∈ 𝑉. 

i) 𝑢 ∈ 𝑉 is vv-strong if  and only if  𝑑𝑣𝑣(𝑢) = 𝑑𝑠𝑣𝑣(𝑢) 

ii) 𝑢 ∈ 𝑉  is vv-weak if  and only if  𝑑𝑣𝑣(𝑢) = 𝑑𝑤𝑣𝑣(𝑢) 

iii) 𝑢 ∈ 𝑉 is balanced if and only if  𝑑𝑣𝑣(𝑢) < 𝑑𝑣𝑣(𝑣) 𝑎𝑛𝑑 𝑑𝑣𝑣(𝑢) > 𝑑𝑣𝑣(𝑤)  for some v 

and w, vv-adjacent to u. 

iv) 𝑢 ∈ 𝑉 is vv-regular if  and only if  𝑑𝑣𝑣(𝑢) = 𝑑𝑠𝑣𝑣(𝑢) = 𝑑𝑤𝑣𝑣(𝑢) = 𝑑𝑟𝑣𝑣(𝑢). 

v) 𝑢 ∈ 𝑉 is strictly vv-strong if and only if   𝑑𝑤𝑣𝑣(𝑢) = 0. 

vi) 𝑢 ∈ 𝑉 is strictly vv-weak if  and only if  𝑑𝑠𝑣𝑣(𝑢) = 0. 
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Proof :  

i) Let 𝑢 ∈ 𝑉 be a vv-strong vertex. Then 

𝑑𝑣𝑣(𝑢) ≥ 𝑑𝑣𝑣(𝑤) for every vertex w vv-

adjacent to u. Therefore 

𝑁𝑤𝑣𝑣(𝑢) = {𝑤 ∈ 𝑉(𝐺)  | 𝑤 is weakly vv −

dominated by the vertex 𝑢} = 𝑁𝑟𝑣𝑣(𝑢).  
Hence 𝑑𝑤𝑣𝑣(𝑢) = 𝑑𝑟𝑣𝑣(𝑢). Then by 

Proposition 2.1, we have 𝑑𝑣𝑣(𝑢) = 𝑑𝑠𝑣𝑣(𝑢). 

Converse follows from the definition. 

ii) can be proved with the similar argument 

and hence we omit the proof. 

iii) Let 𝑢 ∈ 𝑉 be a vv-balanced vertex. 

Suppose both the conditions does not hold, 

then 𝑑𝑣𝑣(𝑢) = 𝑑𝑣𝑣(𝑤) for every vertex w vv-

adjacent to u. Hence u is a vv-regular vertex, 

a contradiction. Conversely, suppose both the 

conditions hold. Since 𝑑𝑣𝑣(𝑢) < 𝑑𝑣𝑣(𝑣)  for 

some v which is vv-adjacent to u. From this 

we conclude that u is not a vv-strong vertex. 

Similarly u cannot be a vv-weak vertex as 

𝑑𝑣𝑣(𝑢) > 𝑑𝑣𝑣(𝑤) for some w, vv-adjacent to 

u. Then by definition, u must be a vv-

balanced vertex. 

(iv), (v) and (vi) directly follow from the 

definition. 

4. STRONG (WEAK) VV-

DOMINATING SETS OF A 

GRAPH 

 

 A vertex 𝑢 ∈ 𝑉 strongly (weakly) vv-

dominates a vertex 𝑤 ∈ 𝑉 if u and w, vv-

dominates each other and 𝑑𝑣𝑣(𝑢) ≥

𝑑𝑣𝑣(𝑤) (𝑑𝑣𝑣(𝑢) ≤ 𝑑𝑣𝑣(𝑤)) . A set of 

vertices is said to be strong vv-dominating set 

(SVVD-set) (weak vv-dominating set 

(WVVD-set)) if each vertex outside the set is 

strongly (weakly) vv-dominated by a vertex 

inside the set. The strong vv-domination 

number γ𝑠𝑣𝑣 =  γ𝑠𝑣𝑣(𝐺)  (weak vv-

domination number γ𝑤𝑣𝑣 =  γ𝑤𝑣𝑣(𝐺) ) is the 

order of the minimum SVVD-set (WVVD-

set) of G.  A set of vertices is said to be strong 

vv-full set(SVVF-set) (weak vv-full set 

(WVVF-set)) if each vertex inside the set 

strongly (weakly) vv-dominates at least one 

vertex outside the set. The strong vv-full 

number 𝑓𝑠𝑣𝑣 = 𝑓𝑠𝑣𝑣(𝐺) (weak vv-full number 

𝑓𝑤𝑣𝑣 = 𝑓𝑤𝑣𝑣(𝐺) ) is the order of the 

maximum strong (weak) vv-full set of G. 

Note that for any tree T, γ𝑠𝑣𝑣(𝑇) = 𝛾𝑠(𝑇) and 

γ𝑤𝑣𝑣(𝑇) = 𝛾𝑤(𝑇). 

 

Example 4.1: 

 

Figure 2. Example for strong and weak vv-dominating sets 
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In the Figure 2, VVD-set is 𝑆1 = {𝑣3, 𝑣11}, 

and VVF-set is 𝑉(𝐺) − 𝑆1. Therefore 

𝛾𝑣𝑣(𝐺) = 2 and 𝑓𝑣𝑣(𝐺) = 9. Also SVVD-set 

is 𝑆2 = {𝑣3, 𝑣6, 𝑣11} and WVVF-set is 

𝑉(𝐺) − 𝑆2. Therefore 𝛾𝑠𝑣𝑣(𝐺) =

3 and 𝑓𝑤𝑣𝑣(𝐺) = 8. Also WVVD-set is 𝑆3 =

{𝑣1, 𝑣2, 𝑣4, 𝑣7, 𝑣9, 𝑣10} and SVVF-set is 

𝑉(𝐺) − 𝑆3. Therefore 𝛾𝑤𝑣𝑣(𝐺) =

6 and 𝑓𝑠𝑣𝑣(𝐺) = 5 

 

4.1 Gallai Type Results 

 

Observation 4.1.1: For any set 𝐷 ⊆ 𝑉, 

 

i) D is SVVF-set if, and only if,  𝑉 − 𝐷 is a WVVD-set. 

ii) D is WVVF-set if, and only if,  𝑉 − 𝐷 is a SVVD-set. 

 

Following proposition depicts the relationship between above defined parameters. 

 

Proposition 4.1.2: Let G be the graph with p vertices, 

i) 𝛾𝑠𝑣𝑣(𝐺) + 𝑓𝑤𝑣𝑣(𝐺) = 𝑝 

ii) 𝛾𝑤𝑣𝑣(𝐺) + 𝑓𝑠𝑣𝑣(𝐺) = 𝑝. 
 

Proof: Let S be the minimum SVVD set of G. 

Then 𝑉 − 𝑆 is an WVVF set by Observation 

4.1.1. Hence 𝑓𝑤𝑣𝑣(𝐺) ≥ |𝑉 − 𝑆|. Therefore 

𝛾𝑠𝑣𝑣(𝐺) + 𝑓𝑤𝑣𝑣(𝐺) ≥ 𝑝. Again, if D is a 

maximum WVVF set of the graph G, then 

𝑉 − 𝐷 is an SVVD set by Observation 4.1.1. 

Hence 𝛾𝑠𝑣𝑣(𝐺) + 𝑓𝑤𝑣𝑣(𝐺) ≤ 𝑝. Then from 

the above inequalities (i) follows. With 

similar arguments we can prove (ii). 

 

 A block h is called a pendant block if 

h is incident on a single cutvertex. Non-

pendant block which is adjacent to a pendant 

block is called support block. 

 

 A cutvertex c is called an end-

cutvertex if c is not a cutvertex in the new 

graph obtained by removing all the pendant 

blocks. Note that every graph G with 𝑛 ≥ 1 

cutvertices has at least one end-cutvertex 

 

Proposition 4.1.3 : For any graph 𝐺 

 

i) 𝛾𝑠𝑣𝑣(𝐺) ≤ 𝛾𝑤𝑣𝑣(𝐺), 

ii) 𝑓𝑠𝑣𝑣(𝐺) ≤ 𝑓𝑤𝑣𝑣(𝐺). 
 

Proof: Proof is by principle of mathematical 

induction on number of cutvertices n of G. If 

G contains only one cutvertex, then clearly 

𝛾𝑠𝑣𝑣(𝐺) = 1 and 𝛾𝑤𝑣𝑣(𝐺) = 𝑚 ≥ 2.  where 

m is the number of blocks in G. Therefore 

𝛾𝑠𝑣𝑣(𝐺) < 𝛾𝑤𝑣𝑣(𝐺). Assume that the result is 

true for 𝑛 = 𝑘.. Consider a graph G with 𝑛 =

𝑘 + 1 cutvertices.  Let c be an end-cutvertex 

of G and 𝑏1, 𝑏2, … 𝑏𝑟 be the pendant blocks 

incident on the cutvertex c and 𝑤𝑖 be a non-

cutvertex incident on the pendant block 𝑏𝑖 for  

1 ≤ 𝑖 ≤ 𝑟.  Now, removal of all pendant 

blocks incident on the end-cutvertex c from 

G results in a graph 𝐺′ with k cutvertices. Let 

𝑊′ be 𝛾𝑤𝑣𝑣-set of 𝐺′. Then 𝑊 = 𝑊′ ∪
{𝑤1, 𝑤2, … 𝑤𝑟} is the 𝛾𝑤𝑣𝑣-set of G. Therefore 

𝛾𝑤𝑣𝑣(𝐺) = |𝑊| = |𝑊′| + 𝑟 > |𝑊′| =
𝛾𝑤𝑣𝑣(𝐺′). Let 𝑆′ be the 𝛾𝑠𝑣𝑣-set of 𝐺′. Then 
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𝑆 = 𝑆′ ∪ {𝑐} is the 𝛾𝑠𝑣𝑣-set of G. Since 𝐺′ has 

k cutvertices, by induction hypothesis, |𝑆′| ≤
|𝑊′| . Therefore 𝛾𝑠𝑣𝑣 (𝐺) = |𝑆| = |𝑆′| +

1 ≤ |𝑊′| + 1 ≤ |𝑊| = 𝛾𝑤𝑣𝑣(𝐺). Hence the 

result is true for 𝑛 = 𝑘 + 1. Hence by 

induction, result is true for all the values of n. 

The result (ii) follows from the Proposition 

4.1.2. 

 

 

4.2 Bounds on strong (weak) vv-

dominating sets 

 

 We now obtain some elementary 

bounds for 𝛾𝑠𝑣𝑣(𝐺) and 𝛾𝑤𝑣𝑣(𝐺). Let 

 𝛿𝑣𝑣(𝐺) and ∆𝑣𝑣(𝐺) respectively be the 

minimum and maximum vv-degrees of a 

graph G. For any 𝑢 ∈ 𝑉, 𝑁𝑣𝑣(𝑢) = {𝑤 ∈

𝑉 | 𝑤 𝑖𝑠 vv − adjacent to 𝑢}.

Proposition 4.2.1: Let G be any graph with p vertices, 

 

i) 𝛾𝑣𝑣(𝐺) ≤ 𝛾𝑠𝑣𝑣(𝐺) ≤ 𝑝 − ∆𝑣𝑣(𝐺) 

ii) 𝛾𝑣𝑣(𝐺) ≤ 𝛾𝑤𝑣𝑣(𝐺) ≤ 𝑝 − 𝛿𝑣𝑣(𝐺) 

 

Proof: Since every SVVD-set or WVVD-set 

is a VVD-set, then we have 𝛾𝑣𝑣(𝐺) ≤

𝛾𝑠𝑣𝑣(𝐺) and 𝛾𝑣𝑣(𝐺) ≤ 𝛾𝑤𝑣𝑣(𝐺). For any 

𝑢, 𝑤 ∈ 𝑉(𝐺), let 𝑑𝑣𝑣(𝑢) = ∆𝑣𝑣(𝐺) and 

𝑑𝑣𝑣(𝑤) = 𝛿𝑣𝑣(𝐺). It is clear that 𝑉 − 𝑁𝑣𝑣(𝑢) 

is a SVVD-set and  𝑉 − 𝑁𝑣𝑣(𝑤) is a WVVD-

set. Hence bound in (i) and (ii) follows. 

 

 In the next proposition we obtain a 

bound for 𝛾𝑤𝑣𝑣(𝐺) and characterize the 

graphs for which the bound is attained. 

 

Proposition 4.2.2: Let 𝐺 be the graph with m 

blocks, then  𝛾𝑤𝑣𝑣(𝐺) ≤ 𝑚.  

 

Further, 𝛾𝑤𝑣𝑣(𝐺) = 𝑚 if, and only if, there is 

no cutvertex weakly vv-dominates all the 

vertices incident in at least two blocks. 

 

Proof : In order to weakly vv-dominate all the 

vertices of G,  we need at most one vertex u 

incident on every block b with 𝑑𝑣𝑣(𝑢) ≤

𝑑𝑣𝑣(𝑤) for every w in b vv-adjacent to u. 

Thus 𝛾𝑤𝑣𝑣(𝐺) ≤ 𝑚. Now, suppose 

𝛾𝑤𝑣𝑣(𝐺) < 𝑚 and let W be a 𝛾𝑤𝑣𝑣-set. Then 

there is some vertex u in W that weakly vv-

dominates all the vertices of at least two 

distinct blocks of G, a contradiction.  

Conversely, suppose that 𝛾𝑤𝑣𝑣(𝐺) = 𝑚 

Then, there is a minimum WVVD set 𝑊 of 

cardinality m. Let 𝑊 = {𝑤1, 𝑤2, … 𝑤𝑚} are 

such that 𝑤𝑖 weakly b-dominate the block 𝑏𝑖 

for 1 ≤ 𝑖 ≤ 𝑚. Now, suppose G has a 

cutvertex u which weakly vv-dominates all 

the vertices incident in two distinct blocks, 

say 𝑏1 and 𝑏2. Then  𝑊′ = (𝑊 −
{𝑤1, 𝑤2}) ∪ {𝑢} is a WVVD set of G. 

Therefore 𝛾𝑤𝑣𝑣(𝐺) = |𝑊′| ≤ |𝑊| − 2 +

1 = 𝑚 − 1 < 𝑚, which is a contradiction. 

 A cutvertex k is called support 

cutvertex if k is incident with a pendant 

block, otherwise it is called non-support 

cutvertex. 

 In the next proposition we obtain a 

bound for 𝛾𝑠𝑣𝑣(𝐺) and characterize the 

graphs for which the bound is attained. 

 

Proposition 4.2.3 : For any graph 𝐺 =

(𝑉, 𝐸) with 𝑛 ≥ 1 cutvertices, 𝛾𝑠𝑣𝑣(𝐺) ≤ 𝑛. 

Further,  𝛾𝑠𝑣𝑣(𝐺) = 𝑛 if, and only if, there is 

no non-support cutvertex u such that 

𝑑𝑣𝑣(𝑢) ≤ 𝑑𝑣𝑣(𝑤) for at least one cutvertex 

𝑤 ≠ 𝑢 in every block incident with u. 
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Proof: It is immediate that the set of all 

cutvertices 𝑆 = {𝑣1, 𝑣2, … 𝑣𝑛} is the SVVD 

set of the graph G. Therefore 𝛾𝑠𝑣𝑣(𝐺) ≤
|𝑆| = 𝑛. Now, to prove the equality, suppose 

there is such a non support cutvertex u and let 

S be the set of all cutvertices of G other than 

u. It is clear that vertices incident with any 

block not incident with u is strongly vv-

dominated by a vertex in S. Let b be a block 

incident with u. Then by our assumption, 

there is some cutvertex v different from u 

having maximum vv-degree in the block b, 

and which therefore strongly vv-dominates 

all the vertices incident with b. Thus 

𝛾𝑠𝑣𝑣(𝐺) ≤ |𝑆| < 𝑛. 

 

Conversely, if 𝛾𝑠𝑣𝑣(𝐺) < 𝑛,  then there is a 

SVVD set S and at least one cutvertex u not 

in S. Then clearly u is a non-support 

cutvertex. Further since vertices of every 

block incident with u is strongly vv-

dominated by a vertex w in S, we have 𝑤 ≠

𝑢 𝑎𝑛𝑑 𝑑𝑣𝑣(𝑢) ≤ 𝑑𝑣𝑣(𝑤). 

 

For any vertex 𝑢 ∈ 𝑉(𝐺), vb-degree 𝑑𝑣𝑏(𝑢) 

is the number of blocks incident on u. 

 

Since 𝑑𝑣𝑏(𝑢) =1 for any non cutvertex u. We 

have 𝛿𝑣𝑏(𝐺) = 1. we introduce another 

parameter 𝛿𝑐𝑣𝑏(𝐺) = min
𝑐∈𝐶(𝐺)

𝑑𝑣𝑏(𝑐). 

 

 A graph G with m blocks is said to be 

B-complete if every blocks are adjacent to 

each other and is denoted by 𝐵𝑚. In the 

following corollary we will get an upper 

bound for 𝛾𝑠𝑣𝑣(𝐺) in terms of the number of 

blocks and 𝛿𝑐𝑣𝑏(𝐺). 

 

Corollary 4.2.4: Let G be the graph with 𝑚 ≥ 2 blocks, 

 

𝛾𝑠𝑣𝑣(𝐺) ≤
𝑚−1

𝛿𝑐𝑣𝑏(𝐺)−1
 and equality holds for block complete graph 𝐵𝑚. 

 

Proof: It is known that ∑ (𝑑𝑣𝑏(𝑤) − 1) =𝑤∈𝑉

𝑚 − 1 (Gallai, 1959). Clearly 𝑑𝑣𝑏(𝑤) = 1 

for any non cutvertices, ∑ 𝑑𝑣𝑏(𝑘) =𝑘∈𝐶(𝐺)

𝑚 + 𝑛 − 1 ≥ 𝑛𝛿𝑐𝑣𝑏(𝐺). Therefore 𝑛 ≤
𝑚−1

𝛿𝑐𝑣𝑏(𝐺)−1
. Also we know that 𝛾𝑠𝑣𝑣(𝐺) ≤ 𝑛  

from the Proposition 4.2.3. Hence 𝛾𝑠𝑣𝑣(𝐺) ≤
𝑚−1

𝛿𝑐𝑣𝑏(𝐺)−1
.

For any B-complete graph 𝐵𝑚 with m blocks,  

𝛿𝑐𝑣𝑏(𝐵𝑚) = 𝑚. Therefore 𝛾𝑠𝑣𝑣(𝐺) = 1 =
𝑚−1

𝑚−1
=

𝑚−1

𝛿𝑐𝑣𝑏(𝐺)−1
.  Hence equality holds for 

any B-complete graph 𝐵𝑚. 

 

Proposition 4.2.5:  Let G be the graph with 𝑛’ support cutvertices and e non cutvertices in the 

pendant blocks, 𝑚𝑝 pendant blocks and p vertices. 

 

i) 𝑛′ ≤ 𝛾𝑣𝑣(𝐺) ≤ 𝛾𝑠𝑣𝑣(𝐺) ≤ 𝑝 − 𝑒 

                                  𝑖𝑖)         𝑚𝑝 ≤ 𝛾𝑤𝑣𝑣(𝐺) ≤ 𝑝 − 𝑛 

 

Proof: For any graph G, there always exists a 

minimum VVD-set containing all the support 

cutvertices. Hence 𝑛′ ≤ 𝛾𝑣𝑣(𝐺) ≤ 𝛾𝑠𝑣𝑣(𝐺).  

Since support cutvertices are sufficient to 

strongly vv-dominate all the vertices in the 

pendant block, we have 𝛾𝑠𝑣𝑣(𝐺) ≤ 𝑝 − 𝑒 . To 
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prove ii), in order to weakly vv-dominates all 

the vertices of G, we need to have at least one 

vertex from every pendant block. Therefore 

𝛾𝑤𝑣𝑣(𝐺) ≥ 𝑚𝑝.  Also observe that set of all 

vertices other than support cutvertices forms 

a WVVD set. Therefore 𝛾𝑤𝑣𝑣(𝐺) ≤ 𝑝 − 𝑛′. 
 

 A graph G is said to be block path (B-

path) if block graph of G is a path. The length 

of the B-path is the number of cutvertices in 

it. For any two blocks 𝑏1, 𝑏2 ∈ 𝐵(𝐺),  the B-

distance 𝑑(𝑏1, 𝑏2) is the length of the B-path 

from 𝑏1 to 𝑏2. The B-eccentricity of a block 

ℎ ∈ 𝐵(𝐺) is defined as  𝑒(ℎ) =

max
𝑔∈𝐵(𝐺)

𝑑(ℎ, 𝑔). Then B-diameter 𝑑𝑏(𝐺) =

max
ℎ∈𝐵(𝐺)

𝑒(ℎ) and B-radius 𝑟𝑏(𝐺) =

min
ℎ∈𝐵(𝐺)

𝑒(ℎ). A lower bound for vb-

domination number is provided in terms of B-

diameter in our next result. 

 

Proposition 4.2.6: Let G be the graph with B-diameter 𝑑𝑏(𝐺), 

 

𝛾𝑣𝑣(𝐺) =
𝑑𝑏(𝐺)+1

2
. 

 

Proof : Let 𝑆 be the 𝛾𝑣𝑣-set of a connected 

graph 𝐺. Consider an arbitrary B-path of 

length 𝑑𝑏(𝐺). Every vertex 𝑣 ∈ 𝑆, can vv-

dominate at most vertices of two blocks of 

diametrical B-path. Therefore this B-path 

includes at most 2𝛾𝑣𝑣(𝐺) blocks and hence 

2𝛾𝑣𝑣(𝐺) − 1 cutvertices. Thus 𝑑𝑏(𝐺) ≤

2𝛾𝑣𝑣(𝐺) − 1 which yields the desired lower 

bound. 

 

a. Point graph and sum of vv-degree 

 

 A point graph of the graph G denoted 

as 𝑃𝐺(𝐺) is the graph whose vertex set is 

same as that of the graph G and any two 

vertices in the point graph are adjacent if and 

only if they are vv-adjacent in the graph G. 

Observe that  𝑃𝐺( 𝑃𝐺(𝐺)) =  𝑃𝐺(𝐺). Number 

of edges in the point graph is denoted as 

𝑞𝑝. For any tree T, 𝑃𝐺(𝑇) = 𝑇. Block-vertex 

degree (bv-degree) of a block h, 𝑑𝑏𝑣(ℎ)  is 

the number of vertices in the block h. 

Cutvertex degree of a block h,  𝑑𝑐(ℎ) is the 

number of cutvertices incident on h.

 

Proposition 4.3.1: Let G be a graph with m blocks and p vertices. Then 

 

∑ 𝑑𝑏𝑣(ℎ) = 𝑝 + 𝑚 − 1
ℎ∈𝐵(𝐺)

 

 

Proof: It is well known that ∑ (𝑑𝑐(𝑏) −𝑏∈𝐵(𝐺)

1) = 𝑛 − 1 (Harary, 1969). Observe that 

𝑑𝑏𝑣(𝑏) = 𝑑𝑐(𝑏) +number of non cutvertices 

of the graph 𝐺. Noting that there are 𝑝 − 𝑛 

non cutvertices in any graph, we have 

∑ 𝑑𝑏𝑣(ℎ) =ℎ∈𝐵(𝐺) ∑ 𝑑𝑐(ℎ) + (𝑝 −ℎ∈𝐵(𝐺)

𝑛) = 𝑚 + 𝑛 − 1 + 𝑝 − 𝑛 = 𝑝 + 𝑚 − 1. 
 

 An expression for the number of 

edges in the point graph in terms of bv-degree 

is obtained in our next result.
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Proposition 4.3.2: Let 𝐺 be a graph with p vertices and 𝑞𝑝 edges. Then 

  ∑ 𝑑𝑣𝑣(𝑤) = 2𝑞𝑝 = ∑ (𝑑𝑏𝑣(𝑏))
2

− (𝑝 + 𝑚 − 1)𝑏∈𝐵(𝐺)𝑤∈𝑉  

 

Proof: Since vv-degree of a vertex in G is the 

degree of the corresponding vertex in 𝑃𝐺(𝐺), 

we have ∑ 𝑑𝑣𝑣(𝑤) =𝑤∈𝑣

∑ deg (𝑤)𝑤∈𝑉(𝑃𝐺(𝐺) = 2𝑞𝑝. 

 

 As every block in 𝑃𝐺(𝐺) is a clique, 

every block in G yield (𝑑𝑏𝑣(𝑏)
2

) edges in the 

point graph. Then 𝑞𝑝 = ∑ (𝑑𝑏𝑣(𝑏)
2

) =𝑏∈𝐵(𝐺)

1

2
∑ ((𝑑𝑏𝑣(𝑏))

2
− 𝑑𝑏𝑣(𝑏))𝑏∈𝐵(𝐺) . Therefore 

2𝑞𝑝 = ∑ (𝑑𝑏𝑣(𝑏))
2

− (𝑝 + 𝑚 − 1)𝑏∈𝐵(𝐺)  

from the Proposition 4.3.1. 

 

Proposition 4.3.3:  For any graph 𝐺 with m blocks and p vertices, 

 

∑ (𝑑𝑏𝑣(ℎ))
2

≥
(𝑝 + 𝑚 − 1)2

𝑚
ℎ∈𝐵(𝐺)

 

 

 

Proof: From the Cauchy-Schwarz inequality, 

we have ∑ |𝑎𝑖𝑏𝑖| ≤𝑚
𝑖=1

√∑ |𝑎𝑖
2|𝑚

𝑖=1 √∑ |𝑏𝑖
2|𝑚

𝑖=1  where 𝑎𝑖 and 𝑏𝑖 are 

integers. Taking 𝑎𝑖 = 𝑑𝑏𝑣(ℎ) and 𝑏𝑖 = 1 in 

the above inequality, we get 

(∑ 𝑑𝑏𝑣(ℎ)𝑚
𝑖=1 )2 ≤ 𝑚 ∑ (𝑑𝑏𝑣(ℎ))

2𝑚
𝑖=1 .  Then 

the result follows from the Proposition 4.3.1. 

 

 

5. CONCLUSION 

 

 Block domination is a well-studied 

parameter in literature. We modified and 

studied strong block domination. Few 

Gallai’s theorem type results are obtained. A 

new class of graphs called point graphs are 

defined. Several bounds for strong block 

domination parameters are obtained.  

Characterization of the graphs attaining these 

bounds are not studied in full and one may 

take this as an open problem for further 

research. 
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