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ABSTRACT     Unification of the recently introduced Kumaraswamy Marshall-Olkin-G and Beta Marshall-Olkin-G 

family of distributions is proposed. A number of important statistical and mathematical properties of the family is 

investigated. A distribution belonging to the proposed family is shown to perform better than the corresponding 

distribution from the Kumaraswamy Marshall-Olkin-G and Beta Marshall-Olkin-G family of distributions by 

considering data fitting with three real life data sets.  
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INTRODUCTION 

 

 

Efforts to define new families of continuous 

distributions by extending well-known 

distributions to provide greater flexibility in 

modelling different types of data generated 

from real life situation has received renewed 

attention of many researchers. To this end 

several new classes were proposed by 

adding one or more parameters.  

Some important recent contributions 

in this area include Marshall-Olkin 

Kumaraswamy-G family introduced by 

Handique et al., (2017a), Generalized 

Marshall-Olkin Kumaraswamy-G family 

(Chakraborty and Handique, 2017a), beta 

generated Kumaraswamy-G (Handique et 

al., 2017b), Kumaraswamy    Generalized 

Marshall-Olkin-G family (Chakraborty and 

Handique, 2017b) and beta Generalized 

Marshall-Olkin-G family (Handique and     

Chakraborty, 2016) among others. Alizadeh 

et al., (2015a) proposed Kumaraswamy 

Marshall-Olkin-G ( GKwMO ) family of 

distributions as a new extension of the 

Marshall-Olkin )MO( family for a given 

baseline distribution with cumulative 

distribution function (cdf) )(tG , survival 

function (sf)  )(1)( tGtG   and 

probability density function (pdf) )(tg . The 

cdf and sf of the GKwMO are given by 

),,;(KwMOG batF                

batGtG ]])}(1{)([1[1                 (1) 

and    ),,;(KwMOG batF            

batGtG ]])}(1{)([1[                      (2) 

where )1(0   and 0,0  ba  are 

two additional shape parameters. The 

density function corresponding to (1) is 

given by 

),,;(KwMOG batf  
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(3)   0,0;0;  bat  Alizadeh 

et al., (2015b) proposed another family of 

distributions called Beta Marshall-Olkin-G (

GBMO ) family of distributions as a new 

extension of the Marshall-Olkin (MO) 
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family for a given baseline distribution with cdf )(tG , sf   )(1)( tGtG   and pdf )(tg . 

The cdf, sf and pdf of the GBMO are 

given respectively by 
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111 )1(),(),(  denotes 

the incomplete beta function ratio. 0

)1(    and 0,0  nm  are two 

additional shape parameters. 

For both these families the authors 

have studied many statistical and 

mathematical properties and have shown that 

distributions belonging to their families 

provide better fit than some competing 

models in fitting real data sets.  

The main motivation of this article is 

to provide a new family that unifies 

GKwMO and GBMO families in to one 

parent family by using the beta generated 

technique of Eugene et al. (2002), 

investigate some of its important statistical 

and mathematical properties and carry out 

comparative data modelling applications. 
    

Beta Kumaraswamy Marshall-Olkin-G  

( GBKwMO ) family of distributions 
 

Here a beta generated GKwMO

G)(BKwMO family is introduced with 

pdf, cdf and hazard rate function (hrf) 

respectively are given by 
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and );(BKwMOG m,n,a,b,αth  
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Important particular cases  

For  

(i)   1 nm , )(G-BKwMO m,n,a,b,α

)(G-KwMO a,b,α  (Alizadeh et al., 

2015a), (ii)  1 ba , 

)(G-BKwMO m,n,a,b,α )(G-BMO m,n,α  

(Alizadeh et al., 2015b), (iii) 1 , 

)BKw()(GBKwMO m,n,a,bm,n,a,b,α   

(Handique et al., 2017b). 

(iv) 1 banm , 

)(GBKwMO m,n,a,b,α  

)(MO   (Marshall and Olkin, 1997),  
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(v)  1 nm , )(GBKwMO m,n,a,b,α  ),(GKw ba  (Cordeiro and de Castro, 

2011), and (vi) 1 ba , 

)(G-BKwMO m,n,a,b,α ),(B nm  (Eugene 

et al., 2002 and Jones, 2004). In the rest of 

the article )(G-BKwMO m,n,a,b,α will by 

default refer to as G-BKwMO unless 

specified otherwise. 
 

Genesis of the proposed family of  

distributions   
 

Here we present a result to show how this 

new family may arises as a distribution of 

order statistics of a sample from KwMO-G 

)(a,b,α distribution. 

Theorem1. If m and n are both integers, then 

the probability distribution of 

)(G-BKwMO m,n,a,b,α  arises as 

distribution of thm order statistics from a 

random sample size 1 nm  from 

)(G-KwMO a,b,α distribution. 

Proof: Let 121 ...,,, nmTTT be a random 

sample of size 1 nm  from 

)(G-KwMO a,b,α  distribution with cdf 

batGtG ]]})(1{)([1[1  . Then the pdf 

of the thm order statistics )(mT  is given by 
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Plots of the pdf and hrf 
 

Here we have plotted the pdf and hrf of the

)(G-BKwMO m,n,a,b,α  taking G to be 

exponential (E), Weibull (W), Lomax (L) 

and Frechet (Fr) distributions for some 

chosen values of the parameters to show the 

variety of shapes assumed by the family.   
 

The BKMO- exponential (BKwMO-E) 

distribution 
 

When exponential distribution with pdf and 

cdf tetg  ):( and tetG  1):( , 

0t , 0  is taken as the base line 

distribution, the pdf and hrf of the resulting 

E-BKwMO model are respectively given by 

),,,,,;(BKwMOE banmtf  
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The BKwMO-Weibull (BKwMO-W)  

distribution 
 

Considering the Weibull distribution 

(Weibull, 1951) with parameters 0  and 
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0  having pdf and cdf  
 tettg  1)(  and 

 tetG 1)(

respectively, we get the pdf and hrf of  

W-BKwMO distribution as 
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and ),,,,,,;(BKwMOW banmth  
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The BKwMO-Lomax (BKwMO-L)  

distribution 
 

Considering the Lomax distribution (Lomax, 

1954) with pdf and cdf given by

)1()](1[)(),:(   ttg and 

,])(1[1),:(   ttG  0t , 0 , 

0 the pdf and hrf of the L-BKwMO

distribution are given respectively by       
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The BKwMO-Frechet (BKwMO-Fr) 

distribution    
 

Suppose the base line distribution is the 

Frechet distribution (Krishna et al., 2013) 

with pdf and cdf given by 
 )()1()( tettg  and  

 )()( tetG  , 

0t , 0 , 0  respectively, then the  

corresponding pdf and hrf of Fr-BKwMO  
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distribution becomes 
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Fig 1 Density plots E-BKwMO , W-BKwMO , L-BKwMO and Fr-BKwMO  

Distributions clockwise from top left corner. 
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Fig 2 Hazard plots E-BKwMO , W-BKwMO , L-BKwMO and  Fr-BKwMO  

distributions clockwise from top left corner. 

 

From the plots in figure 1 and 2 it can 

be seen that the family is very flexible and 

can offer many different types of shapes of 

density and hazard rate function including 

the bathtub shape for hazard.   

  

Statistical and mathematical properties 

  

In this section we derive some general 

results for the proposed 

)(G-BKwMO m,n,a,b,α  family.  

 

Series expansions of pdf and cdf 

By using binomial expansion in (4), we 

obtain  
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, 

jiji ja ,, )1(   and );(MO tf , 

);(MO tF are pdf and cdf respectively of the 

Marshall-Olkin (MO) family. 
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Alternatively, we can expand the pdf as 

);(BKwMOG αm,n,a,b,tf  

k
k

ja

k

MO tFtf )];([);( MO
1)1(

0

 




   (9) 

))1(;(MO
1)1(

0

 




ktfk

ja

k

  

where,  









1

0

,

1)(

0

)1(
m

i

ji

k
nib

j

k   








 


k

ja 1)1(
 and kk k   )1(  

Similarly an expansion for the cdf of 

)(G-BKwMO m,n,a,b,α  can be derived as 
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Now to expand the cdf 
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following result  
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(See “Incomplete Beta Function” From Math 

World-A Wolfram Web Resource. 

http://mathworld.Wolfram.com/Incomplete 

Beta Function. html).  

From (5) using (10) we get   
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Order statistics  
 

Suppose  TTT ...,,, 21  is a random sample 

from any )(G-BKwMO m,n,a,b,α  

distribution. Let :rT  denote the thr  order 

statistics. The pdf of :rT  can be expressed 

as 
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We can now use general expansion of the 

pdf and cdf in equation last section to get 
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(Nadarajah et al., 2015) and cqi  ,,  defined 

earlier.  
 

Probability weighted moments  

In this section we express probability 

weighted moments (PWM) of the proposed 

family in terms of those of )(MO 

distribution. 

The thrqp ),,(  PWM of T is defined by 

dttftFtFt rqp
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(Greenwood et al., 1979). From equations 

(7) and (9) the 
ths  moment of T  can be 

obtained either as  
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is the PWM of )(MO  distribution. 

Proceeding similarly we can derive 

ths  moment of the thr  order statistic :rT

from a random sample of size   from 

)(G-BKwMO m,n,a,b,α  using equation (12) 

as 
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where ji, , k   and  qpi ,,  defined earlier. 

 

Generating function 
 

Here we express the moment generating 

function of the proposed family in terms of 

those of the exponentiated )(MO   

distribution using the results of section 3.1 as 
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where )(sM X is the mgf of an exponentiated 

(Lehman Alternative-I) )(MO 

distribution.    

   

Rényi entropy  
 

The entropy of a random variable is a 

measure of uncertainty variation and has 
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been used in various situations in science 

and engineering. The Rényi entropy of a 

random variable having pdf )(tf  is given by 
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Quantile function, Median and random 

sample generation 
 

The quantile function can be obtained by 

inverting cdf in equation (5) 
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where )(, uQz nm  is the quantile function of 

beta distribution.  

It is possible to obtain some expansions for 

)(, uQ nm  in the Wolfram website (http:// 

mathworld. wolfram.com/ PowerSeries.html) 

as 
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For example, the thp  quantile pt and median 

of E-BKwMO are respectively given by  
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Random sample from GBKwMO can be 

generated by inverting the cdf. 
 

Skewness and kurtosis 
 

The Bowley’s skewness (Kenney and 

Keeping, 1962) measures and Moor’s 

kurtosis (Moors, 1988) measure for 

GBKwMO  family are respectively given 

in terms of the quantile function as  
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Asymptotes  
 

Some results regarding the asymptotic 

shapes of the proposed family following is 

stated here. 
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Proposition 1 The asymptotes of pdf, cdf and hrf given in equations (4), (5) and (6) as 0t  are 

given by 
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Proposition 2 The asymptotes of pdf, sf and hrf given in equations (4), (5) and (6) as t  are 

given by 
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Maximum likelihood estimation and data 

modelling 
 

The model parameters of the 

)(G-BKwMO m,n,a,b,α  distribution can be 

estimated by maximum likelihood. Let 

),...,,( 21 tttt  be a random sample of size   

from )(G-BKwMO m,n,a,b,α  with 

parameter vector Tbanm ),,,,,( βρ  , 

where ),,...,( 21 qβ corresponds to the 

parameter vector of the baseline distribution 

G. Then the log-likelihood function for ρ  is 

given by 
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This log-likelihood function can not be 

solved analytically because of its complex 

form here we have employed global 

numerical optimization methods to obtain 

the maximum likelihood estimates (MLEs). 

By taking the partial derivatives of the log- 

 

likelihood function with respect to   

,,,, banm and β components of the score 

vector T
banm TUUUUUUU ),,,,,( βρ  can 

be obtained as follows:  
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Asymptotic standard error for the MLEs 
 

The asymptotic variance-covariance matrix 

of the MLEs of parameters can obtained by 

inverting the Fisher information matrix )(I ρ  

which can be derived using the second 

partial derivatives of the log-likelihood 

function with respect to each parameter. The 
thji elements of )(I ρ  are given by                       

,])([I 2
jiji E   ρ  

qji  5,,2,1,   

The exact evaluation of the above 

expectations may be cumbersome. In 

practice one can estimate )(I ρ by the 

observed Fisher’s information matrix 

)Î()ˆ(Î jiρ  is defined as:                         

  ,)(Î
ρ̂ρ

2


 jiji ρ  

qji  5,,2,1,   

Using the general theory of MLEs under 

some regularity conditions on the parameters 

as  the asymptotic distribution of  

)ˆ( ρρ  is ),0( VN k , where 

)(I)( 1
ρ

  jjvV .  

The asymptotic behaviour remains valid if 

V  is replaced by )ˆ(Îˆ 1
ρ

V . This result 

can be used to provide large sample standard 

errors for the model parameters. Thus an 
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approximate standard error for the MLE of 

j
th

 parameter j  is given by jjv̂ .  

 

Comparative data modelling  
  

Comparison with the KwMO-G and  

BMO-G    
 

Here we consider fitting of three real data 

sets to show that the W-BKwMO  

distribution from the W-BKwMO  family 

can be a better model than its sub model the 

W-KwMO and W-BMO   (Alizadeh et 

al., 2015 a, b) distribution.  

The density function of the W-KwMO  and 

W-BMO  are respectively given by 
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We have used AIC, BIC, CAIC and HQIC 

for model selection, KS test for goodness of 

fit and Likelihood ratio test for test of 

hypotheses for nested models.  
 

Likelihood Ratio Test for nested models   
 

We have seen that the 

)W(BKwMO ,α;b,a,n,m,  reduces to 

)W(KwMO ,α;b,a, , when 1 nm  

and to )(W-BMO βλ, α;n,m,  for 1 ba , 

we have therefore used likelihood ratio test 

to check whether the additional parameter(s) 

in the proposed model provide statistically 

significant improvement in data fitting over 

these nested in sub models.   

Here we have employed likelihood ratio 

criterion to test the following null 

hypothesis: 

(i) 1:0  nmH , that is the sample is    

from )W(KwMO ,α,b,a,  

1,1:1  nmH , that is the sample is 

)W(BKwMO  ,,b,a,n,m, . 

(ii) 1:0  baH , that is the sample is 

from ),,(W-BMO n,m,  

1,1:1  baH , that is the sample is 

)W(BKwMO  ,,b,a,n,m, . 

Writing ),,,,,,( banmρ  the likelihood 

ratio test statistic is given by LR =

))ˆ(/)ˆ((ln2 *
ρρ  , where *

ρ̂ is the 

restricted ML estimates under the null 

hypothesis 0H and ρ̂ is the unrestricted ML 

estimates under the alternative hypothesis 1H

. Here under the null hypothesis 0H the LR 

criterion follows Chi-square distribution 

with 2 (two) degrees of freedom (df). The 

null hypothesis is rejected for p-value less 

than 0.05. 

 

Data set I: This data set is obtained from 

Smith and Naynlor (1987). The data consists 

of 63 observations of the strengths of 1.5 cm 

glass fibres, measured at the National 

Physical Laboratory, England. 

Data set II: This data set is a subset of data 

reported by Bekker et al., (2000) which 

corresponds to the survival times (in years) 

of a group of patients given chemotherapy 

treatment alone. The data consisting of 

survival times (in years) for 46 patients. 

Data set III: This data set about 346 

nicotine measurements made from several 

brands of cigarettes in 1998. The data have 

been collected by the Federal Trade  

Commission which is an independent agency 
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of the US government, whose main mission 

is the promotion of consumer protection. 

[http: //www.ftc.gov/ reports/tobacco or http: 

// pw1.netcom.com/ rdavis2/ smoke. html.] 

The total time on test (TTT) plot 

proposed by Aarset (1987) is technique 

helpful in detecting the shape of hazard rate 

of observed data and hence in deciding a 

model for fitting. The TTT is drawn by 

plotting 


 















1

)()(

1

)( )()(

r

ri

i

r

r yyiyiT   

against i ,where, and,...,2,1 i

),...,2,1()( ry r are the order statistics 

corresponding to the sample, The hazard of 

the given data set is constant, decreasing and 

increasing if the shape of the TTT plot is a 

straight diagonal line, is of convex shape and 

concave shape respectively. The TTT plots 

for the data sets considered here are 

presented in Fig. 3 which indicates that the 

data set I and III have increasing hazard rate 

while for data set II it is nearly constant. We 

have presented the descriptive statistics of 

the data sets in Table 1 and findings of the 

data fittings in Table 2(a) and 2(b).  

In Table 2(b), the MLEs, log 

likelihood, AIC, BIC, CAIC and HQIC 

values and KS, LR statistics are presented 

for both distributions. According to the 

lowest values of the AIC, BIC, CAIC and 

HQIC the W-BKwMO   distribution is 

seen as the better model than both the 

W-KwMO  and W-BMO distribution. 

Histograms and ogives of the data sets I, II 

and III along with the fitted pdfs and cdf’s 

are also displayed in Figures 4, 5 and 6 

respectively to visually confirm the 

closeness of the fitted distributions to the 

observed data. It’s easy to see that BKwMO-

W provides the best fit to all the data sets 

considered here. 

 

 

 

Fig 3: TTT plots of the data sets I, II and III form left to right 
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Table 1: Descriptive Statistics for data set I, II and III 
 

Data Sets   Minimum    Mean     Median       s.d.       Skewness     Kurtosis     1
st
 Qu.       3

rd
 Qu.     Maximum 

     I             0.550          1.507     1.590        0.324        -0.879          0.800         1.375         1.685          2.240 

    II             0.047         1.343      0.841        1.246         0.936         -0.457         0.395         2.178          4.033 

    III           0.100          0.853      0.900        0.334        0.171          0.296          0.600         1.100          2.000 

 

 

Table 2 (a): MLEs, standard errors (in parentheses) values for data sets I, II and III 

  Models                             m̂                     n̂                   â                   b̂                  ̂                ̂                 ̂              

Data I 

   BMO-W                        0.941           14.606              ---               ---               3.512         0.014         5.419 

),,,,( nm               (0.302)          (3.659)                                                  (1.361)      (0.006)      (0.233) 

   KwMO-W                       ---                 ---                1.367          0.103            2.144         1.738         3.768 

),,,,( ba                                                            (0.591)       (0.014)         (0.629)      (0.002)       (0.001) 

   BKwMO-W                   0.125            0.884             4.012          0.249          12.818         0.149         6.283 

),,,,,,( banm         (0.016)         (0.229)          (1.245)        (0.123)        (5.786)       (0.002)      (2.347) 

Data II 

   BMO-W                        1.733            0.223               ---               ---               0.016         0.643         1.921 

),,,,( nm               (0.325)          (0.089)                                                  (0.025)      (0.134)      (0.513) 

   KwMO-W                      ---                 ---                 0.326          0.149           0.0006        0.059         3.931 

),,,,( ba                                                            (0.142)       (0.032)         (0.001)      (1.581)       (2.367) 

   BKwMO-W                   0.093            0.081             2.288          1.499           0.0004       0.003         5.931 

),,,,,,( banm         (0.036)         (0.016)          (1.183)        (1.068)        (0.003)       (0.010)      (4.783) 

Data III 

   BMO-W                        0.237            0.917               ---               ---               0.014         0.005         8.571 

),,,,( nm               (0.021)          (0.181)                                                  (0.006)      (0.001)      (0.377) 

   KwMO-W                      ---                 ---                 0.438          0.883            0.124         0.110         5.470 

),,,,( ba                                                            (0.096)       (0.198)         (0.089)      (0.097)       (0.883) 

   BKwMO-W                   0.421            0.308             0.443          1.719           0.002          0.003        10.952 

),,,,,,( banm         (0.537)         (0.365)          (0.541)        (2.380)        (0.015)       (0.0009)    (0.014) 
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Table 2 (b): AIC, BIC, CAIC, HQIC, KS (p-value) and LR (p-value)  

values for data sets I, II and III 

  Models                            
maxl                     AIC           BIC         CAIC         HQIC                   KS               LR   

                                                                                                                                                       (p-value)     (p-value)                    

Data I 

   BMO-W                         16.43              42.86        53.56      43.91        47.06              0.08           17.66       

),,,,( nm                                                                                                                (0.91)       (0.0001) 

   KwMO-W                      19.68              49.36        60.06      50.41        53.56              0.12          24.16 

),,,,( ba                                                                                                                (0.42)        (0.014)                                                 

   BKwMO-W                    7.60               29.20        44.18      31.23        35.08              0.07             ---       

),,,,,,( banm                                                                                                        (0.95) 

Data II 

      BMO-W                      56.43             122.86      132.01    124.36      126.26             0.08           8.84       

),,,,( nm                                                                                                                (0.91)       (0.012) 

   KwMO-W                      55.97             121.94      131.09    123.44      125.34             0.58          7.92 

),,,,( ba                                                                                                                (0.82)       (0.019)                                                

   BKwMO-W                   52.01             118.02       130.83    120.97     122.78              0.54            --- 

),,,,,,( banm                                                                                                         (0.92) 

Data IIII 

   BMO-W                        109.54            229.08       248.33    229.26      236.78             0.30           7.26       

),,,,( nm                                                                                                                (0.06)       (0.026) 

 

   KwMO-W                     111.49            232.98       252.23    233.15      240.68            0.26          11.16 

),,,,( ba                                                                                                                (0.12)       (0.004)                                                

   BKwMO-W                   105.91           225.82       252.77     226.15     236.60            0.25            ---  

),,,,,,( banm                                                                                                        (0.14) 

 

                 

(a)                                                                   (b)                     

      Fig 4: Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and  

      estimated cdf’s for the WKwMO , WBMO and WBKwMO for data set I. 
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(a)                                                                      (b) 

Fig 5: Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and 

estimated cdf’s for the WKwMO , WBMO and WBKwMO for data set II.  

  

              

                                      (a)                                                                     (b) 

Fig 6: Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and  

estimated cdf’s for the WKwMO , WBMO and WBKwMO for data set III. 

 

From the findings tabulated in 

Table 2(b), on the basis of AIC, BIC, 

CAIC, HQIC and K-S test it is evident that 

the WBKwMO  distribution is a better 

model than both the WKwMO and 

WBMO for all the data sets considered 

here. The plots of observed and the 

estimated pdfs and cdfs also support the 

same findings. The likelihood ratio test has 

favored the WBKwMO  in four out of 

the six comparisons considered here.  

 

CONCLUSION 
 

A new Beta Kumaraswamy Marshall-Olkin 

family of distributions is introduced and 
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some of its important properties are 

studied. The maximum likelihood method 

for estimating the parameters is 

implemented. Three applications of real 

life data fitting shows encouraging result in 

favour of the proposed unified family over 

Kumaraswamy Marshall-Olkin and the 

Beta Marshall-Olkin family of 

distributions. 
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