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ABSTRACT    In a conservative system, energy equipartition results in a Boltzmann-Gibbs distribution. This is 

also expected in an ergodic kinetic economy if wealth is conserved. Empirical data however has shown the 

existence of a regime with a power law distribution. In models albeit with conservative wealth, we show that this 

arises due to anomalous diffusion. 

 

(Keywords: Boltzmann-Gibbs, economy, wealth, anomalous diffusion) 

PACS : 89.65.Gh, 02.30.Sa, 05.45.Pq    

 

INTRODUCTION 

Income distributions are observed to have a robust 

mixed distribution differentiating between the 

lower income and higher income groups. The 

distribution of income for the higher income group 

seems to fit a power law. Among the first 

observations of this is attributed to Pareto [1]. The 

income distribution for lower income group has 

been historically fitted to lognormal distributions, 

which is attributed to Champernowne [2] who also 

proposed a simple model describing the 

interactions.   

Patriaca et al. [3] have proposed the Gamma 

distribution as a better fit for the lower income 

group drawing analogy to thermodynamics of a 

many body interacting system at equilibrium. It was 

put forth by Charterjee et al. in [4] that the Pareto 

exponent is observed to vary between 1 and 3 while 

the higher income group usually consists of less 

than 10% of the population. A recent review of the 

field was presented by Yakovenko et al. [12]. 

 

STATISTICAL MECHANICS OF 

INCOME/WEALTH DISTRIBUTIONS 

It has been noted since Pareto that the distribution 

of income for the higher income group can be fitted 

to a power law. The distribution of income for the 

lower income group however has been fitted as 

either a lognormal distribution by Simon [5] and 

later by Montroll and Shlesinger [6] or as a 

Boltzmann-Gibbs distribution by Chatterjee [4] and 

Dragulescu [7]. Physicists attempting to model 

economic behavior adopt the analogy of large 

systems of interacting particles as seen in the 

kinetic theory of gases.  

 

They hypothesized that the regular patterns 

observed in income and wealth distribution is due 

to a natural law for the statistical properties of 

many body systems interacting as an economy 

analogous to gases and liquids. Thus the description 

of an economy as a thermodynamic system allows 

the identification of the income distribution as the 

distribution of energy levels of particles in a gas.  

The Boltzmann-Gibbs distribution states that the 

probability of finding a physical system in a state 

with energy is  given by           
Tεc=εP /e   (1) 

where c is the normalizing constant and T is the 

temperature.   

 

In [7], the argument was that a many body 

interacting system such as the economy can be 

described by the Boltzmann-Gibbs distribution by 

choosing the conserved quantity as money. The 

process is described by the relation 

             

         Δmm=m' ii  

 (2) 

         Δm+m=m' jj
 

 (3) 

where agents i and j complete a transaction with the 

total amount of money before and after the 

transaction conserved.  

 

The resultant wealth distribution from the 

interactions in (2) and (3) is able to account for the 

Boltzmann-Gibbs distribution. The trading model 

in [4] allows a distribution of wealth  with a mixed 

distribution as observed in empirical data. The 

model is based on the assumptions made by 

Dragulescu [7], particularly conservation of money 

during a trade. The rules of trading can be written 

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=FREESR&search=Search&smode=results&possible1=89.65.Gh&possible1zone=article&bool1=and
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=FREESR&search=Search&smode=results&possible1=02.30.Sa&possible1zone=article&bool1=and
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=FREESR&search=Search&smode=results&possible1=05.45.Pq&possible1zone=article&bool1=and
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as 

    

   tmλ=+tm iii 1  

tmλ+tmλε+ jjiiij 11  

 (4) 

tmλ=+tm jjj 1

tmλ+tmλε+ jjiiij 111

 (5) 

The model initializes λ  as an inhomogeneous 

parameter where iλ  and 
jλ  are saving 

propensities for agent i and j respectively.   

These saving propensities are fixed over time, 

distributed independently, randomly and uniformly 

between 10 λ .  

 

ANOMALOUS DIFFUSION 

 

Anomalous diffusion is diffusion occurring at a 

faster or slower rate than normal. Experimentally, it 

is characterized by the scaling of the mean squared 

displacement with time given by 

                          

              
γt~tr 2

 (6) 

γ is the scaling index for diffusion. 1=γ is normal 

diffusion, 1>γ is a superdiffusive process and

1<γ is a subdiffusive process.  

An excellent example of the analysis is seen in the 

rotating annulus experiment [8].  

 

Physical phenomena associated with anomalous 

diffusion is the occurence of long waiting times of a 

particle in a certain position and long jumps taken 

by a particle from one position to another.  

 

To model systems that exhibit these phenomena, 

we employ the continuous time random walk 

(CTRW) model first introduced in [9]. 

 

 It consists of successive random displacements

nΔx and waiting times nΔt drawn from respective 

probability distribution functions

 

 

 

(pdf)
2

1
~

Δx
ΔxP n

and
1

1

Δt
ΔtΦ n

.  

  

We are particularly interested in finding the position tx  after time t and its associated pdf tx,W . For this, we 

adopt the inverse Fourier-Laplace Montroll-Weiss equation [10,11] given by  

 
βα

βα,

βα

r trLt=r,tW // /  (7)   

 

where ikzkEdkπ=zL
β

αβα,

1
2  is the universal scaling function. The spatio-temporal scaling can 

be obtained from this relation as 

 
βαt~tX /

                           (8) 

 

 and  represent the spatial and temporal exponents respectively in which 0< <2 and 0< <1. The ratio 

βα /  represents the interplay between super and subdiffusion where 0.5/ βα  implies anomalous diffusion 

[11]. 

  

This relation was applied by Brockmann et. al. [11] 

to collected data from the website 

www.wheresgeorge.com where users could enter 

their location and bank note serial number into the 

website database and track the bank notes location 

over time as other users enter a bank notes serial 

number.  

They show that movement of money is due to both 

scale-free periods of displacements and scale-free 

periods of rest as well.  

  

METHODOLOGY 

Anomalous diffusion has been observed in the 
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diffusion of money across the United States. This 

observation has motivated us to study the diffusion 

of money in trading models. This was because of 

the observation by Brockmann as elaborated before, 

that the spatial inhomogeneities existing in a real 

economy in the form of geographical location and 

socioeconomic factors such as population density 

between geographic locations, will result in the 

observation of Levy flights in money displacement 

as well as long waiting times of money in a 

location.  

 

A trading model is a suitable candidate for these 

observations to occur as the nature of a trading 

model, based on well defined trading rules will 

result in both a trapping of money with specific 

agents as well as more vibrant moving money with 

other agents. The Chakrabarti trading model is a 

suitable candidate to study anomalous diffusion in a 

trading model as the occurrence of long waiting 

times will naturally happen due to the existence of 

agents who have large saving propensities.  

 

These agents will hold on to monies for longer 

periods of times due to its propensity to save more 

and trade less. 

The Chakrabarti trading model has to be modified 

to allow proper calculations of jump lengths and 

waiting times. Only then can we attempt to perform 

diffusion analysis.  

 

As the paradigm for our study is oriented towards 

the money in the trading model, we have to clearly 

define a path the money will flow to and also a 

proper mechanism to track the money's position and 

time at each location throughout the trading 

process.  For the path the money will flow to, the 

clearly defined path will be determined by the 

agents trading money from one to another.  

 

We have predetermined that agents can only trade 

with its immediate neighbors. In order to properly 

simulate this action, we firstly define a suitable 

lattice size of agents. Since our goal is to determine 

if the displacement is scale free, our lattice size 

must be at least 3 orders of magnitude in length. 

The lattice size is simply our definition of the area 

populated by the agents.  

 

Once we have determined the lattice size we have 

to randomly choose an agent to perform a trade. 

This agent can only trade with its nearest neighbor. 

The definition of these neighbors is dependent on 

where the agent is located. There are three locations 

which determine who are the neighbors of an agent. 

These locations are the edges, the corners and the 

main lattices. 

 

Since we want to study the diffusion of money, we 

have to know its location and time during each 

trade. In programming terms, this is accomplished 

by saving into an array a money's owners. Thus as 

the trading process goes on and money changes 

hands, the previous owners of a money will be 

noted and since we have defined the agents position 

as the spatial variable we have knowledge of  the 

money's trajectory.  

 

Similarly after a trade, the current iteration time 

will be saved into an array. Thus we currently have 

knowledge of time between one trade and another 

which allows us to calculate the waiting time 

between trades. 

 

Now that we have stated the modifications we have 

made to track the money's position and time 

throughout the trading process, we can 

subsequently determine the displacements of each 

money in the system after a given period of time 

and also the waiting times between trades.  

 

To calculate the displacements, we have to know 

after a certain period of time where the money 

currently is and what was it's original position.  

 

We then make use of the determination of distance 

by applying the Pythagoras theorem. After we have 

obtained data that will allow us to plot the 

distribution of displacement, we want to obtain data 

that will allow us to plot the waiting time 

distribution. This is done by simply finding the time 

difference between successive jumps of money 

from one agent to another.  

 

This data will then be sorted into bins in order to 

plot a distribution of waiting time. This is done by 

simply conducting a census of frequency of a 

waiting time over the entire waiting.  

  

 

RESULTS AND DISCUSSION 

  

In this section, we present the resultant PDF of 

displacement and its subsequent data analysis. We 

firstly present presenting a few PDFs of 

displacement after 4000 million iterations in the 

Figure 1.  

 

As was reported by Brockmann, displacement 

between 1 to 10 units is also seen to scale linearly. 

This means there is an exponential growth in 

displacement during this range. Brockmann 
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however did not report of a plateau as seen in 

displacements between 10 to 200 units.  

 

We propose that these displacements are due to 

monies being in the vicinity of agents with a high 

saving propensity. Thus, these agents play the role 

of an attractor. This observation was not seen by 

Brockmann because displacements that were 

reported in wheresgeorge.com are of significant 

distance. Now that we have observed the change of 

the PDF of displacement with time, we want to 

perform a power law analysis to allow us to obtain 

the scaling exponent, β . 

 

 We present the portion of the distribution that we 

propose is scale free in Figure 2. We opt to sample 

465 data points between 200 and 631 units of 

displacement as the scale free region.. To estimate

β , we perform maximum limit estimation. We 

choose minx  as 200. 

 

 

 Figure 1:  PDFs of displacement after 4000 million iterations 
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We obtain the parameter estimate of the scaling 

exponent 2.4631=β . This value suggests that 

money is undergoing superdiffusion. We then asses 

the goodness of fit of the parameter estimate of the 

scaling exponent with the Kolmogorov-Smirnov 

statistic also described in [12].  

 

The value of D that we obtain is D=0.08. The final 

step is to determine the p-value [12] for the 

obtained statistic. From the dataset of 464 points we 

randomly choose 400 data points to calculate the p-

value. We obtain a p-value of 92.0%% which is an 

agreeable value. 

 

Our next task will be to plot the distribution of 

waiting time of money with agents and infer the 

scaling exponent from the distribution. We show 

the PDF after 4
10

 iterations in Figure 3.  

 

 

 

Figure 3:  PDF of waiting time after 4000 million iterations 

Figure 2:  PDF of displacement between 200 and 631 units of displacement  
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We firstly observe ripples in the distribution which 

is due to the biased random number generator used. 

The ripples can be reduced by applying a fairer 

random number generator. We then observe that 

half the portion of observations occurred under 10
4

 

iterations.  

 

There are however cases where monies have to wait 

longer than 10
4
 iterations and we hypothesize scale 

free behavior occurring in this region between 10
4  

and 10
6

 iterations. Our next step is to perform a 

power law analysis on the scale free region. We 

present the region in the Figure 4.  

 

The first step is to perform a maximum likelihood 

estimation of the scaling exponent. We choose 

minx  as 4 in this case and the sample size is over 

900 data points. We obtain the parameter estimate 

of the scaling exponent as 1.6411=α . This also 

suggests that the money is undergoing 

superdiffusion. We then asses the goodness of fit of 

the parameter estimate of the scaling exponent with 

the Kolmogorov-Smirnov statistic. The value of D 

that we obtain is D=0.033  

 

Our final step is to determine the p-value for the 

obtained statistic. From the dataset of 900 points we 

randomly choose 700 data points to calculate the p-

value. We obtain a p-value of 91.0% which is an  

 

 

 

 

agreeable value. 

 

CONCLUSION 

 

A scale free observation for the pdf of money 

displacement and waiting time is seen for the 

Chakrabarti trading model. The ratio of 

1.50/ =βα  implies anomalous diffusion 

specifically superdiffusion.  
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