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ABSTRACT   Bayesian Model Averaging (BMA) is a statistical post-processing method to 

calibrate the ensemble forecasts and create more reliable predictive interval. However, BMA does not 

consider spatial correlation. Geostatistical Output Perturbation (GOP) considers spatial correlation 

among several locations altogether. It has spatial parameters that modifies the forecast output to 

capture spatial information. Spatial Bayesian Model Averaging (Spatial BMA) is a method which 

combines BMA and GOP. This method is applied to calibrate the temperature forecast at 8 stations 

in Indonesia that is previously predicted by Numerical Weather Prediction (NWP). Temperature 

forecasts of BMA are used to obtain simulated spatially correlated error that modify temperature 

forecasts. Spatial BMA is able to calibrate the temperature forecast better than raw ensemble whose 

coverage comes closer to the standard 50%. Based on Root Mean Square Error (RMSE) criteria, 

Spatial BMA is able to correct forecast bias NWP with RMSE value of 1.399° lower than NWP of 

2.180°. 
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1. INTRODUCTION 

 

In the last few years, BMKG 

(Meteorological, Climatological and 

Geophysical Agency) in Indonesia has already 

developed the numerical weather forecasting 

process using Numerical Weather Prediction 

(NWP) to support forecasters. But the NWP 

forecasting has high bias because it is 

measured on a global scale (homogeneous) and 

is unable to capture the dynamics fluctuating 

atmosphere (BMKG, 2011; Wilks, 2006). 

Statistical post-processing of NWP outcome 

using ensemble has been used for increasing 

the forecasting accuracy i.e. the NWP 

composite of some modeling methods, such as 

ARIMA, Neural Network, Principal 

Component Regression (PCR), etc.  

 

However, the ensemble forecasting is 

often still underdispersive (the centered 

weather forecasting on a value with low 

variance). As a result, the forecast interval 

becomes narrow and the observations cannot 

be contained in the forecast interval, so the 

ensemble calibration is required (Schmeits and 

Kok, 2010). Several methods for forecast 

calibrating of ensembles are Bayesian Model 

Averaging (BMA), Geostatistical Output 

Perturbation (GOP) and Spatial BMA, which 

are a combination of BMA and GOP. 

 

BMA is a method that combines the 

forecasts of all members of the ensemble based 

on weighted average, so it does not just 

consider the contribution of one model from 

any models as in most of statistical models 

(Raftery and Zheng, 2003). In the Meteorology 
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field, BMA is the most widely used method 

because its performance is quite satisfactory. 

However, this method has the disadvantage, 

i.e. only considering one location and ignoring 

spatial correlation. 

 

One of the spatial-based weather 

forecasting methods is GOP. This method is 

able to generate large ensembles based on the 

identified spatial relationship of the model 

error. Then, the error is added to the 

forecasting result from a simple regression, to 

obtain a calibrated forecast which is capable in 

capturing the spatial phenomenon (Gel et al., 

2004). However, GOP generally uses only one 

predictor from the NWP output, such as 

maximum temperature or minimum 

temperature. 

 

Spatial BMA is a combination of BMA 

and GOP methods. This method is expected to 

overcome the weaknesses of BMA and GOP. 

Like in BMA, probability density function 

(pdf) predictive Spatial BMA is the weighted 

average of conditional pdf’s centered on bias 

correction of ensemble member models, with 

weights that depend on the contribution of each 

member. In Spatial BMA model, conditional 

pdf is multivariate densities with covariance 

structures in order to consider the spatial 

structure from weather observation. 

 

In addition, the Spatial BMA model 

parameters have to conform to the GOP model 

parameters. Spatial BMA method can be used 

to produce statistical ensembles from an entire 

area of simultaneous weather observation, of 

any size, and at minimum computing cost. In 

individual location, Spatial BMA can be 

reduced to BMA (Berrocal et al., 2007). 

 

In this study, the forecast of air 

temperature in 8 meteorological stations in 

Jakarta, Indonesia was calibrated with Spatial 

BMA. Previously, each NWP parameter in the 

nine measurement grids was processed first 

with Principal Component Analysis (PCA) to 

reduce the dimension. Members of the Spatial 

BMA ensemble are obtained from Partial Least 

Square (PLS), Principal Component 

Regression (PCR) and Ridge regression. This 

study aims to calibrate air temperature 

forecasts, in order to obtain a better method of 

optimizing the NWP output and is expected to 

be used for short-term forecasting. 

 

 

2. LITERATURE REVIEW 

 

2.1 Ensemble Forecasting using Model 

Output Statistics (MOS) 

 

Prediction ensemble system is a system 

that consists of several combinations of models 

that process a single deterministic outcome 

(deterministic forecast) (Park, 2006). NWP is 

one of the single deterministic forecast models 

commonly used by many countries. However, 

in processing, NWP forecasts still have a high 

bias, so it needs to be optimized by combining 

multiple NWPs to obtain accurate, precise and 

calibrated forecasts. 

 

The ensemble forecast is performed by 

an integrated approach of several statistical 

modeling methods that process the same NWP 

output and is known as MOS. The study used 

3 statistical modeling methods as ensemble 

members, i.e. Partial Least Square (PLS), 

Principal Component Regression (PCR) and 

Ridge Regression. 

 

i. Partial Least Square (PLS) 

 

PLS models the relationship 

between the response Y and the predictor 

X based on the latent variables 

simultaneously (Wold et al., 2001). PLS 

corresponds to PCR, i.e. forming a matrix 

of latent component T in (1) of size n c  

as a linear transformation of the predictor 

matrix X: 
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                                                                    T = XW                   (1) 

 

 

with W is being the weighted matrix 

p c . Index n denotes the number of 

observations, p denotes the number of 

predictors, and c denotes the number of 

latent components. The latent component 

T is as a random variable X and is used 

to predict Y. The response Y of size 

q c  with q is the number of responses. 

When T is formed, then Q'  is obtained 

by the least squares method based on (2): 

 

                                                 
1Q' = (T ' T) T ' Y .                 (2) 

 

Based on Wold et al. (2001), one way to model Y is: 

 

                                                        Y = XB + F .                   (3) 

 

By applying substitution involving (3), we obtain a weighted B in (4): 

 

                                            
1

XB + F = TQ' + F

XB = XWQ'

B = WQ' = W(T ' T) T'Y
.                (4) 

 

Thus, it is obtained (5) to guess the response: 

 

 

                       
1 1 1        Y = XB = TW W(T 'T) T ' Y T(T ' T) T ' Y

.               (5) 

 

 

ii. Principal Component 

Regression (PCR) 

Suppose that 
'

1 2x   px x  ... x     is 

a predictor vector of a matrix X of size 

n p . If the matrix A is an orthogonal 

matrix p p  with the m-th column 

containing the m-th eigenvector from 
T

X X  and assumes m ≤ p, then the PC 

score for each observation is as in (6):

 

                                                                      Z = XA                    (6) 

 

 

where element (i) from Z represents the 

score of the m-th PC for the i-th 

observation where i = 1,2, ..., n. Based on 

the orthogonal properties of A where 

AA' = I , multiple linear regression with 

correlated predictors can be converted 

into PCR as in (7): 

 
 

                                                     y = Xβ +ε = Zγ +ε                                          (7) 

 

                                                with XA = Z and A'β = γ . 
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iii. Ridge Regression 

 

Based on Draper and Smith 

(1992), ridge regression uses a non-

negative constant λ to calculate the more 

efficient regression coefficients, while 

reducing the singularity due to 

multicollinearity. (8) is used to calculate 

the Ridge regression coefficient:

 

 

                                                    ridge

-1
β = X'X+ λI X'y .                                          (8) 

 

 

So that obtained the estimated model based on (9): 

 

                                                       ˆ
ridgey = X .                                       (9) 

 

The λ constant can be selected intuitively (by default) or by the cross-validation technique based 

on the lowest RMSE. The higher λ causes the ˆ
ridge  coefficient closer to 0 or causes the parameter 

to have less effect on the response variable. 

 

 

2.2 Spatial Bayesian Model Averaging 

(Spatial BMA) 

 

Spatial Bayesian Model Averaging 

(Spatial BMA) is a method for post-processing 

ensembles statistically which is a combination 

of BMA (Raftery and Zheng, 2003) and GOP 

(Gel et al., 2004). Like BMA, pdf predictive 

Spatial BMA is the weighted average of 

conditional pdf that centered on bias correction 

of ensemble member models, with the weights 

which are associated with the contribution of 

each member. 

The Spatial BMA method considers the 

weather location  ( ) :Y s s S Y , where 

S is a quite large set of locations but is finite 

and conditional on an ensemble,

 

 

                                           SssfSssf MM  :)(,...,:)(1 FF1  
 

of M weather forecasts simultaneously, rather than just a single deterministic weather forecast. The 

Spatial BMA predictive pdf for weather forecasts is 

 

 

                                               
1

1

( | ,..., ) ( | )
M

M m m m
m

g w g


Y F F Y F                             (10) 

 

where mw  is the BMA weight, equal to the 

probability that member of m is the best among 

the members of the forecast ensemble, and 

(Y|F )m mg is a conditional pdf of Y  if member 

of m is known to be the best. In practice, 

conditional pdf is multivariate densities 

centered on the forecast member's bias 

correction, 
0, 1,m m m 1 + F , and has covariance 

structures spatially m . This condition can be 

denoted by: 
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                                           0, 1,| ~ ,m m m m mMVN  Y F 1 + F                              (11) 

 

In Equation (11),  

 

                                                        
2

2 2m

m m



 



                                   (12) 

 

 

where 2  is BMA variance,   is spatial 

structure of GOP covariance matrix, each of 
2

m   and 2

m  is a GOP covariance parameter. 

Like GOP, Spatial BMA has a 

multivariate predictive pdf for weather 

forecasts. The requirement of ensemble 

member m can be the best as described in 

equation (13): 

 

 

                                          
0, 1, 1 2| m m m m m m   Y F 1 + F E E                         (13) 

 

 

where each of  1mE  and 2mE denotes a part of 

continuous and discrete of the conditional 

error. 

Here is the algorithm for getting members of 

Spatial BMA ensemble: 

1) Take as many  1, ,m M samples, 

with probabilities given by BMA 

weights 1 2, , , Mw w w . This is to get 

members of the dynamic ensemble. 

2) Simulate the realization of continuous 

and discrete parts, 1mE  and 2mE , on the 

conditional error of each conditional 

pdf. 

3) Use the right-hand side in equation (13) 

to get a bias-corrected of weather 

forecast 
0, 1,m m m 1 + F , with 

conditional error simulation, 1mE  and 

2mE . 

 

Furthermore, we get weather forecast 

ensemble of Spatial BMA, with various 

ensemble sizes which we want, and with 

minimum computing costs (Berrocal et al., 

2007). 

 

2.3 Goodness of Fit Model Evaluation 

 

Goodness of fit models that aim to 

calibrate weather forecasts are not adequately 

measured if by using only RMSE. The other 

measures are also needed to check the level of 

bias correction and sharpness forecasts 

ensemble, i.e. CRPS and coverage (Feldmann, 

2012). 

 

2.3.1 Root Mean Square Error 

(RMSE) 

 

The RMSE as an indicator of accuracy 

in (14) is obtained from the square root of 

MSE, which is the sum of the squares of 

the difference between the forecast and 

observation values. 
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2

1

1
ˆRMSE MSE

n

i i
i

y y
n 

                            (14) 

 

where n is the number of observation. 

 

2.3.2  Continuous Rank Probability 

Score (CRPS) 

 

CRPS, calculated based on (15), is used 

to check how precise the predictive 

intervals produced by the calibration 

methods, such as Spatial BMA. The lower 

the CRPS value, the more reliable the 

predictive interval (Feldmann, 2012).

 

 

                                  
2

1 1

1 1
CRPS = crps , ( ) ( )

n n
forecast obs

i i i i
i i

F y F y F y dy
n n



  

                                15) 

 

 

where n is number of observation, i is the 

time period (e.g. daily),  forecast

iF y  is the 

predictive cumulative distribution function 

(cdf) at time ith, and  obs

iF y  is the empirical 

cdf at time ith (Anggraeni, 2013). If the 

threshold forecast < observation, then 

  0obs

iF y  , and 1 if the threshold forecast 

≥ observation. 

2.3.3 Coverage 

 

The sharpness of the ensemble 

forecasts can be identified through 

coverage in (16). If the observation is in the 

ensemble range, then the observation is 

identified to be in the coverage, where the 

coverage standard is derived from

 

 

 

                                                                          
1

100%
1

M

M





               (16) 

 

 

The ensemble forecast is called to be 

calibrated if the value of coverage closes to 

the standard of calculation in (16). 

 

2.4 Temperature 

 

The atmospheric temperature is the 

measure of the temperature at various levels in 

the Earth's atmosphere that can be affected by 

solar radiation, humidity and altitude, thus the 

effect is a complex relationship among the 

biosphere, the lithosphere and the atmosphere 

(Tanudidjaja, 1993). Energy is constantly 

moving from the surface to the air above it 

which causes heat transfer. 

 

 

3. METHODOLOGY 

 

3.1  Data Source 

 

The data used in this study are the 

secondary data from Meteorology, 

Climatology and Geophysics Agency 

(BMKG), i.e. the data of CCAM (conformal 

cubic atmospheric model) NWP data from 1st 

of January 2009 to 31st of December 2010 or 

708 days. The location of research focus is 

meteorological station, i.e. Kemayoran, Priok, 

Cengkareng, Pondok Betung, Curug, 

Dermaga, Tangerang and Citeko. 
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3.2 Research Variables 

 

Response variable in this study is air 

temperature of the observation data, i.e. 

maximum temperature (Celsius). Predictors 

are air temperature forecasts which are 

modeled by PLS, PCR, and Ridge regression. 

Predictors are obtained from the outcome of 

the CCAM NWP parameter, shown in Table 1, 

which were initially reduced by PCA.

 

 

Table 1: NWP parameters (BMKG, 2011). 

 

NWP Parameter (code) Level Unit 

Surface Pressure Tendency (dpsdt) surface hPa 

Water Mixing Ratio (mixr) 1, 2, 4 g/kg 

Vertical Velocity (omega) 1, 2, 4 knot 

PBL depth (pblh) surface meter 

Surface Pressure (ps) surface hPa 

Mean Sea Level Pressure (psl) surface hPa 

Screen Mixing Ratio (qgscm) surface g/kg 

Relative Humidity (rh) 1, 2, 4 % 

Precipitation (rnd) surface mm 

Temperature 1, 2, 4 Celcius 

Maximum Screen Temperature (tmaxcr) surface Celcius 

Minimum Screen Temperature (tmincr) surface Celcius 

Pan Temperature (tpan) surface Celcius 

Screen Temperature (tscrn) surface Celcius 

Zonal Wind (u) 1, 2, 4 knot 

Friction Velocity (ustar) surface m/sec 

Meridional Wind (v) 1, 2, 4 knot 

Geopotential Height (zg) 1, 2, 4 meter 

 

 

 

Besides the 7 parameters that are 

measured in the different pressure levels, 11 

other parameters were measured only in the 

surface level with a height of ± 2 meters above 

sea level. Thus, the number of NWP 

parameters is 32 parameters. Then, each of the 

32 parameters is measured on the nine grid (3 

x 3) measurements, so there are 288 parameters 

in total. 

 

3.3 Steps of Analysis 

 

The steps to apply Spatial BMA to 

obtain a calibrated temperature 

forecast are as follows: 

a. Standardize data, both for 

observation data and NWP 

parameter data. 

b. Reduce the dimensions of each 

NWP parameter using PCA based 

on the covariance matrix, then we 

get PC scores. 

c. Predict the air temperature with 

temperature observation as 

response and PC score as predictor. 
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Forecasts are generated from PLS, 

PCR, and Ridge regressions. 

d. Calibrate the ensemble forecasts 

for air temperature using BMA 

based on 30-day training window, 

starting from estimation of 

regression coefficient of β0,m and 

β1,m and calculating BMA 

calibrated forecast on certain day. 

e. Model the air temperature forecast 

using spatial modeling as in GOP, 

with BMA forecast results as a 

predictor based on 30-day training, 

starting from analyzing empirical 

semivariogram, obtaining 

forecasting temperature that has 

been added with spatial errors 

effect until goodness examination 

of Spatial BMA model. 

 
 

4. RESULTS AND DISCUSSION 
 

4.1 Standardizing Data and Dimension 

Reduction using PCA 
 

The NWP parameters to be processed 

as predictors have various measurement units. 

Therefore, it is necessary to standardize using 

scaled and center method. It aims to minimize 

the difference of measurement scale between 

NWP parameters so that the model formed will 

be balanced.  

 

Furthermore, NWP parameters need to 

be reduced using PCA as there is an indication 

of spatial relationship between grids in a NWP 

parameter. PCA also aims to simplify 

modeling and is expected to shorten the 

computation process without reducing 

precision and accuracy. For the Dermaga 

meteorological station, each NWP parameter 

produces 1 to 2 components. Resulting in a 

total of 41 components of 32 NWP parameters. 

Similarly with other meteorological stations, it 

also produces 1 to 2 components on each NWP 

parameter. The variability of NWP parameters 

explained by the PC varies from 80% to 100%.  

 

 

Thus, the dependency of weather 

conditions between grids in a NWP parameter 

is relatively high. The ensemble member 

models will be discussed in detail for Dermaga 

station. Meanwhile, the other stations have the 

same steps. Furthermore, 41 components of 

NWP parameter will be involved in MOS 

modeling in which PC scores from each of the 

41 selected components are used as predictors 

to obtain forecasts of ensemble members. 

 

4.2 PLS Regression for Maximum 

Temperature 

 

Predicted residual error sum of square 

(PRESS) value are obtained from validation 

data that are generally randomly selected. This 

is to see if a regression model has accurate 

forecasting capabilities. For Dermaga station, 

the lowest PRESS value for maximum 

temperature is in the PLS model with 16 

components, which is 0.641. After the optimal 

number of components is obtained and used as 

a latent component contributing to the 

modeling, the next step is to apply the PLS 

regression for maximum temperature. Table 2 

shows the regression coefficient of PLS (in the 

standardized form).
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Table 2: The regression coefficient of PLS for maximum temperature. 

Predictors TMAX Predictors TMAX 

PC.dpsdt -0.112 PC.tmaxscr -0.538 

PC.mixr1 0.130 PC.tminscr -0.128 

PC.mixr2 0.139 PC.tpan 0.092 …
 …

 

…
 

…
 

PC.temp1 -0.115 PC.zg2 0.020 

PC.temp2 0.318 PC1.zg4 -0.0002 

PC.temp4 0.017 PC2.zg4 0.067 

 

The next step is to form the PLS model 

based on the regression coefficient in Table 2. 

However, the model is still in the form of the 

PC that can be returned to the variable form in 

nine grids. To return to the nine grids variable, 

multiply the PC with each eigenvector. Here is 

a summary of the eigenvector for each 41 

components in Dermaga station with the first 

column showing the eigenvector of dpsdt 

(surface pressure tendency) and the last 

column is the eigenvector of zg4 (geopotential 

height). 

 

 

dpsdt 

 

 

mixr1 

 

 

mixr2 

 

 

mixr4 

 

 

omega1 

 

 

omega1 

 

 

… 

 

 

zg4 

 

 

zg4 

0,3333 0,3411 0,3353 0,3337 0,2908 0,4402 0,2007 0,4516

0,3333 0,3220 0,3339 0,3346 0,2546 0,5264 0,3958 0,2278

0,3333 0,3131 0,3239 0,3301 0,2129 0,5401 0,4396 0,0187

0,3334 0,3494 0,3396 0,3370

      

       

      

    

E =

0,3826 0,0026 0,0704 0,5045

0,3334 0,3565 0,3432 0,3395 0,3931 0,1631 0,4394 0,0633

0,3334 0,3478 0,3393 0,3355 0,3614 0,1186 0,4080 0,1937

0,3333 0,3270 0,3260 0,3233 0,3439 0,2151 0,1027 0,4975

0,3333 0



      

     

    

  ,3226 0,3281 0,3337 0,3556 0,3005 0,2504 0,4224

0,3333 0,3174 0,3301 0,3323 0,3593 0,2454 0,4149 0,1481

 
 
 
 
 
 
 
 
 
 
 

     
         

 

 

4.3 PCR for Maximum Temperature 

 

Similar to PLS regression, the step before 

modeling the weather with PCR regression is 

to determine the optimal number of 

components from 41 components of the 

Dermaga station. Although there are 

similarities in the initial procedure, but PCR 

does not select the optimal component based 

on the lowest RMSE such as PLS regression. 

For PCR, the selected component is the 

cumulative number of components which is 

capable to represent a predictor variance of at 

least 80%, it means that the PC should be able 

to explain data variability of at least 80% 

(Johnson and Wichern, 2007). It was found 

that 8 of the 41 components were able to 

represent more than 80% predictor variance, so 

it was decided that the optimum components 

number for the maximum temperature PCR 

model were 8.  

 

After knowing the optimal number of 

components to be used in the modeling, the 

next step is obtaining the PCR regression for 

maximum temperature. The PCR regression 

coefficients (in the standardized form) are 

shown in Table 3
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Table 3: The regression coefficient of PCR for maximum temperature. 

 

Predictor TMAKS Predictor TMAX 

PC.dpsdt 0.011 PC.tmaxscr -0.072 

PC.mixr1 -0.028 PC.tminscr -0.054 

PC.mixr2 0.015 PC.tpan -0.073 …
 …

 

…
 …

 PC.temp1 -0.058 PC.zg2 -0.011 

PC.temp2 -0.049 PC1.zg4 -0.038 

PC.temp4 -0.028 PC2.zg4 0.016 

 

Furthermore, to obtain the maximum 

temperature forecasts is to form the PCR 

model based on the regression coefficient in 

Table 3, then do the same steps as PLS to 

obtain the model in the form of variables in 

nine grids. 

4.4 Ridge Regression for Maximum 

Temperature 

 

After obtaining ensemble members from 

PLS and PCR models, then weather modeling 

with Ridge regression is able to reduce the 

multicollinearity effect. Unlike the previous 

two methods, this method does not require the 

selection of many optimal components. This 

method uses a constant λ to minimize the 

impact of the singularity of XTX. Figure 1 

assists the visual determination of the constant 

λ.

 

 

 
Figure 1: Convergence of ridge regression coefficients. 

 

Determination of convergence based on 

Figure 1 should be avoided because it is 

subjective. However, in this case, the constant 

λ remains non convergent even when λ 

approaches 100. So it is decided to use visual 

assistance only in determining λ. Based on 

Draper and Smith (1992), the determination of 

the lower and upper limits for λ is not strictly 

determined. However, the upper limit should 

not be greater than 10 or 20 to rid of the 

regression coefficients that are insignificant 

because they are close to 0. Based on Figure 1, 

it is indicated that the regression coefficients 

for maximum temperature to converge is when 

λ is 9 or greater. Table 4 is the Ridge regression 

coefficient for Dermaga station with λ = 9.
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Table 4: The ridge regression coefficient for maximum temperature. 

 

Predictor TMAKS Predictor TMAX 

PC.dpsdt -0.075 PC.tmaxscr -0.513 

PC.mixr1 0.123 PC.tminscr -0.108 

PC.mixr2 0.102 PC.tpan 0.053 

…
 

…
 

…
 

…
 

PC.temp1 -0.108 PC.zg2 0.022 

PC.temp2 0.256 PC1.zg4 0.001 

PC.temp4 0.008 PC2.zg4 0.079 

 

After the regression coefficient is obtained in the previous stage, then the next step is to form a 

model based on the regression coefficient in Table 4. 

 

 

4.5 Description of Ensemble Member 

Weather Forecast 

 

After obtaining the model to be used to 

predict the air temperature, the next step is to 

compare the forecast results of each ensemble 

member, i.e. PLS, PCR, and Ridge, and 

temperature observation values. Descriptive 

analysis is performed to see how well the 

ensemble member predictions before being 

calibrated by Spatial BMA. Figure 2 below 

shows the first 100-day trend of 2009 from the 

ensemble member's predictions and maximum 

temperature observations for the Dermaga 

station. 

 

 
Figure 2 : Forecasts trend of ensemble members and observation of maximum temperatures. 

 

Figure 2 indicates that each ensemble 

member, either PLS, PCR or Ridge, has been 

able to follow the general pattern of maximum 

temperature which is, if the maximum 

temperature trend increases then forecasts 

follow the rise, and the same if the temperature 

trend decreases, the forecasts will also 

decrease. However, the problems occur are 

under-fitting (predictions below the value of 

observation) or over-fitting (predictions are 

above the value of observation) that 

consistently occur on the same day. Although 
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forecasts ensemble members can capture the 

temperature patterns that occur, but the 

forecast generated is far from the observation. 

Therefore, it is necessary to calibrate the model 

to produce more accurate and precise weather 

forecasts. 

 

4.6 Calibrating Weather Forecast using 

Spatial BMA 

 

Based on the previous discussion, it is 

indicated that the results of ensemble 

forecasting still have a fairly low accuracy. 

Therefore, statistical processing methods are 

needed to calibrate the forecasting results to 

make the forecast bias lower. Calibration is 

done to make adjustments to the variance, to 

obtain a more reliable forecast with a 

proportional variance and has a narrower 

predictor interval. 

 

 Calibration of weather forecast on 8 

sites individually using BMA was done by 

Luthfi (2017). Based on Raftery et al. (2005), 

it is said that calibration with BMA will result 

in better forecasts if the ensemble range has a 

significant correlation with the degree of 

forecasting error. Ensemble range is the 

difference between the maximum and 

minimum of an ensemble. However, the 

significant correlation does not necessarily 

guarantee the calibrated ensemble forecasts 

which are no longer under-dispersive or over-

dispersive and can be identified from the 

Verification Range Histogram (VRH). 

 

Figure 3 is used to identify whether the 

raw ensemble forecasts are under-dispersive or 

over-dispersive. A U-shaped histogram 

indicates an under-dispersive ensemble, while 

a histogram resembling a normal distribution 

curve indicates an over-dispersive ensemble. 

In this case, the raw ensemble consists of PLS, 

PCR, and Ridge which are the result of 

simultaneous ensemble forecasts. 

 

 

 
Figure 3: VRH raw ensemble of Dermaga site for maximum temperature 1st Jan ’09 - 30th 

Jan’09. 

 

Figure 3 shows that the raw ensemble 

forecasts for maximum temperatures are still 

under-dispersive because the shape of the 

histograms. This indicates that there are still 

many maximum temperature observations that 

are outside the ensemble range, i.e. the 

difference between the maximum and 

minimum of an ensemble forecast. Based on 

Figure 3, the coverage of ensemble is 19.23%. 

This value is still far below the standard, which 

is 50%. It means that MOS ensemble forecasts 

are still under-dispersive. This can make the 
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predictive intervals less precise, so it is needed 

to calibrate using Spatial BMA. 

 

Based on Luthfi (2017), it is indicated 

that BMA as a non-spatial approach that can 

calibrate the ensemble forecasts quite well. By 

applying the Spatial BMA method, it is 

expected to capture the spatial phenomena that 

occur and also utilize information from 

ensemble forecasts, so it can result in accurate 

and reliable weather forecasts. The first step in 

Spatial BMA modeling is to simultaneously 

regress all stations of each ensemble member 

to the observation so as to obtain regression 

bias coefficient, that is, β0,m and β1,m for each 

member m. The regression coefficient and 

weight for each member m and time t are the 

same for 8 sites. For example, Table 5 presents 

the regression coefficients, weights, forecasts 

that will be predictors in the Spatial BMA 

model. 

 

Table 5: Parameter estimates for ensemble member model of BMA, maximum temperature, 

Kemayoran, 8th of February 2009. 

 

Model β0 β1 w 
Ensemble Member Forecasts 

(°C) 

Obs. 

(°C) 

Simultaneous BMA 

(°C) 

PLS 0.27 0.97 0.771 29.26 

29.30 28.60 PCR -0.77 0.99 0.095 28.20 

Ridge 0.31 0.97 0.134 2.23 

 

Table 5 shows that PLS has the highest 

contribution to forecasts for maximum 

temperatures due to w weights of 0.771, higher 

than PCR and Ridge whose respective weights 

are 0.095 and 0.134. Based on Table 5 it can be 

said that the simultaneous BMA forecast 

accuracy on February 8, 2009 did not differ 

significantly with the ensemble member 

forecasts. Furthermore, the forecast result of 

the simultaneous BMA used as a predictor for 

the formation of Spatial BMA model with 

response is the observation of maximum 

temperature. Before that, we calculated the 

value of Moran's I and p-value to see the 

significance of spatial dependencies. Table 6 

presents the values of Moran's I and p-value.

 

Table 6: Parameter estimates for ensemble member model of BMA, Maximum temperature, 

Kemayoran, 8th of February 2009. 

 

Weather Element Moran's I st.dev p-value 

TMAX 0.135 0.141 0.048 

 

The Moran's I and p-value in Table 6 

indicate that there are spatial dependencies for 

maximum temperatures at the significance 

level of 0.05  . Positive Moran's I values 

indicate that air temperatures at adjacent sites 

tend to have a higher relationship than distant 

locations. Having proven spatial dependencies 

between 8 sites, the first step in Spatial BMA 

modeling is to obtain the estimates of 

parameter 0  and 1 , and also residual 

estimation to form empirical semivariogram. 

Estimation of parameters and presented in 

Table 7. 
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Table 7: Parameter estimation of spatial BMA model for maximum temperature. 

 

Weather Element 
  

  
TMAX 0.542 0.990 0.741 0.025 

 

Based on Table 7, it can be seen that the 

0  parameters in the TMAKS weather element 

are not significant, while the 
1  parameters are 

significant. Although there are insignificant 

parameters, this does not affect the coverage 

and predictive interval width of the Spatial 

BMA model. Furthermore, semivariogram 

formed empirical exponential model of spatial 

parameters ρ2, τ2 and r estimated based on the 

iterative method of L-BFGS. The 

semivariogram is formed from residual model 

Spatial BMA based on the estimation of 0  

and 1  from Table 7. Figure 4 is a 

semivariogram formed. 

 

 

 
Figure 4: Empirical semivariogram for maximum temperature. 

 

In Figure 4, the semivariogram value is 

constant after the range of 8.69 km or more, 

with a sill value (nugget + partial sill) of 1.005. 

A larger sill value may cause the estimation 

variance to become larger. This means that 

there is a possibility that the precision of the 

maximum temperature forecast is high so that 

it impacts the interval of Spatial BMA model 

that can be evaluated with CRPS. The Spatial 

BMA model runs a simulation process by 

modifying residuals to get calibrated weather 

forecasts. The process is run to get 99 member 

realization of the ensemble. The reason for the 

use of 99 realizations according to Gel et al. 

(2004) is to accommodate the observed value 

when Spatial BMA is said to be calibrated 

when the tth temperature observation falls 

between the two percentiles. Table 8 presents 

the RMSE and predictive interval of the Spatial 

BMA model on 2nd of March, 2009.

0̂ 1̂  0̂SE  1̂SE

range (km) 
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Table 8 : RMSE of maximum temperature forecasts using Spatial BMA and NWP, 2nd of 

March, 2009. 

 

Stamet 
Obs. 

(°C) 
NWP (°C) 

Spatial BMA 

(°C) 

RMSE 

Spatial BMA 

RMSE 

NWP 

Kemayoran 33 29.87 31.38 

1.399° 2.180° 

Priok 32.4 29.58 31.18 

Cengkareng 31.9 29.77 31.04 

Pd. Betung 34 29.59 32.57 

Curug 33.2 29.23 31.41 

Tangerang 33 29.67 32.13 

Citeko 26 29.65 24.84 

Dermaga 31.8 29.69 29.76 

 

Based on Table 8, it can be said that 

Spatial BMA is able to correct forecast bias 

NWP. This is indicated by the lower RMSE 

forecast of Spatial BMA than the NWP 

forecast at the maximum temperature 

parameter. In addition, the coverage value is 

used as the calibrated indicator of forecasts. 

Forecast results are said to be calibrated if the 

value of coverage approaches the standard 

coverage value. The coverage standard is the 

percentage comparison between the number of 

ensembles minus 1 by the number of 

ensembles plus 1. In this case, according to the 

number of simulated ensemble realizations, the 

number of ensembles is 99. So the standard 

coverage used is 98%. This coverage indicator 

can be visualized with Verification Rank 

Histogram (VRH). Figure 5 represents the 

VRH for the forecast of maximum temperature 

using Spatial BM.

 

 

 
Figure 5: VRH Spatial BMA forecasts, number of ensembles = 99. 

 

Based on Figure 5, it is known that the 

coverage forecasts for Spatial BMA TMAKS is 

87.94% which is the percentage of the number 

of observations that are in 2nd rank to 98th rank. 

The coverage value of TMAKS parameters is 

close to 98%. This indicates that Spatial BMA 

is sufficiently able to calibrate the maximum 

temperature forecast parameters. Furthermore, 

in order to be able to compare directly with the 

forecast results before calibration, the number 

of simulations of the ensemble realization is 3, 

in accordance with the number of ensemble 

members before calibration. Thus, the default 

coverage value used is 50%. Figure 6 is a 
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verification Rank Histogram (VRH) of the TMAKS forecasts result using Spatial BMA with the 

number of ensembles of 3. 

 
Figure 6: VRH Spatial BMA forecasts, number of ensembles = 3. 

 

Figure 6 shows that the Spatial BMA 

forecast coverage for the TMAKS parameter is 

48.63%, which is the percentage of the number 

of observations entered in 2nd rank and 3rd rank. 

The value is close to the 50% coverage 

standard. This indicates that the Spatial BMA 

with the number of ensembles of 3 has been 

sufficiently able to calibrate the results of the 

maximum temperature forecast. This 

indication is supported by the value of forecast 

coverage before being calibrated which is still 

far from the standard that is 19.23%.

 Based on RMSE and coverage 

standards, it can be said that Spatial BMA 

method is able to improve the sharpness of the 

ensemble forecasts by making more 

observation values in the ensemble range. But 

in terms of accuracy, Spatial BMA has not 

been able to correct the forecast bias. This is 

supported by the CRPS values of Spatial BMA 

that is higher than the Simultaneous BMA. 

Table 9 shows the comparison of CRPS values 

between the Spatial BMA model and the 

Simultaneous BMA model (before spatially 

calibrated).

 

 

 

Table 9: CRPS value of Spatial BMA and Simultaneous BMA. 

 

Response CRPS  BMA Simultaneous 
CRPS Spatial BMA 

99 Ensemble 3 Ensemble 

TMAX 0.562 0.580 0.763 

 

 

Table 9 shows that the CRPS value of 

Simultaneous BMA for maximum temperature 

is smaller than the CRPS of Spatial BMA 

either with 3 ensembles or 99 ensembles. This 

indicates that the Spatial BMA model has not 

been able to correct forecast bias and improve 

the predictive pdf of the Simultaneous BMA 

model. Table 9 also shows that the CRPS 

model value of Spatial BMA with 99 

ensembles is smaller than the Spatial BMA 

model CRPS with only 3 ensembles. So that, 

for the Spatial BMA model it is better to use a 

large number of simulated realization 
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ensembles in order to calibrate the forecast 

optimally. 

 

 

5. CONCLUSION 
 

Based on coverage standards, it can be 

said that Spatial BMA method is able to 

improve the sharpness of the ensemble 

forecasts by making more observation values 

in the ensemble range. Coverage of Spatial 

BMA forecasts for maximum temperature 

increased to closer coverage standard (50%), 

i.e. 48.63% from previous 19.23%. In addition, 

based on RMSE value, Spatial BMA is able to 

correct forecast bias of NWP prediction with 

RMSE value of 1.399° lower than NWP of 

2.180°. 
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