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ABSTRACT  In this paper, by combining the Solodov and Svaiter projection 

technique with the conjugate gradient method for unconstrained optimization proposed by 

Mohamed et al. (2020), we develop a derivative-free conjugate gradient method to solve 

nonlinear equations with convex constraints. The proposed method involves a spectral 

parameter that satisfies the sufficient descent condition. The global convergence is proved 

under the assumption that the underlying mapping is Lipschitz continuous and satisfies a 

weaker monotonicity condition. Numerical experiment shows that the proposed method is 

efficient. 
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1. INTRODUCTION 

 

Iterative methods for solving 

nonlinear equations with convex  

 

 

constraints are a rapidly developing field 

that has many spectacular results. Our 

focus in this article is to solve the following 

nonlinear equation with convex 

constraints: 

         

                                                                T(k) = 0, k ∈ Λ,                                           (1) 

 

where Λ is a nonempty closed and convex 

subset of the Euclidean space, and the 

mapping T: Rn → Rn (where Rn is an n-

dimensional Euclidean space) is 

continuous. The constraints on nonlinear 

equation (1) appear in various applications 

such as the economic equilibrium problem 

(Dirkse & Ferris, 1995), financial 

forecasting problems (Dai et al., 2020), 

nonlinear compressed sensing 

(Blumensath, 2013) and non-negative 

matrix factorisation (Berry et al., 2007; 

Lee & Seung, 2001). To this effect, several  

algorithms for solving (1) have been 

proposed in the literature in recent years. 

Newton’s method, quasi-Newton methods, 

the Levenberg–Marquardt method and 

many of their variations (Dennis & More, 

1974; Dennis Jr & Moré, 1977; Qi & Sun, 

1993; Yamashita & Fukushima, 2001) are 

attractive for solving (1) because of their 

rapid convergence from a sufficiently good 

initial guess. However, these methods are 

not suitable for solving large-scale 

nonlinear equations because they need to 

solve a linear system of equations at each  
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iteration using or approximating the 

Jacobian matrix. Consequently, 

derivative-free methods for solving 

nonlinear equations have attracted several 

authors. See, for example, (Huang et al., 

2016). 

 

The projection method developed 

in (Solodov & Svaiter, 1999) has garnered 

significant consideration. Motivated by the 

work of Solodov and Saiter (Solodov & 

Svaiter, 1999), Zhang and Zhou (Zhang & 

Zhou, 2006) proposed a spectral gradient 

projection method for solving a nonlinear 

equation involving monotone mapping. 

Most recently, (Ibrahim, et al., 2020) 

proposed a derivative-free projection 

method for solving nonlinear equation (1). 

The method combines the projection 

technique and the Liu-Storey-Fletcher 

Reeves (LS-FR) conjugate gradient 

method proposed by Djordjević 

(Djordjević, 2019). The proposed method 

does not store a matrix at each iteration. 

Several other derivative-free methods have 

been developed with the help of the 

projection scheme (Abubakar, et al., 2020; 

Abubakar, et al., 2020; Ibrahim et al., 

2019; Ibrahim, 2020; Ibrahim, et al., 2020; 

Ibrahim, et al., 2020; Mohammad & Bala 

Abubakar, 2020). 

 

In this paper, by applying the 

projection technique in (Solodov & 

Svaiter, 1999) to the new hybrid 

coefficient proposed by (Mohamed et al., 

2020), we propose a derivative-free 

conjugate gradient method for solving 

large-scale nonlinear equations with 

convex constraints. The proposed method 

generates a sufficient descent direction per 

iteration and does not require additional 

computation costs. The global 

convergence of the method is established 

under the assumption that the underlying 

operator is Lipschitz continuous and 

satisfies a weaker monotonicity 

assumption.  

 

The remainder of this manuscript is 

structured as follows: The proposed 

derivative-free method and its algorithm 

are presented in the next section. Section 3 

is devoted to the proof of the 

theoretical/convergence analysis of the 

proposed method. In Section 4, we present 

the results of some numerical experiments 

and analyse the experimental results. 

Finally, the paper is concluded in  

Section 5. 

 

2. ALGORITHM 

 

In this section, we present our 

method of solving nonlinear equation (1) 

with convex constraints. Our approach is 

based on the Hybrid-Syarafina-Mustafa-

Rivaie (HSMR) (Mohamed et al., 2020) 

approach for the unconstrained 

optimisation problem. The HSMR 

approach solves 

 

min𝑓(𝑘), 𝑘 ∈ ℛ𝑛,                       (2) 

 

where 𝑓: ℛ𝑛 → ℛ (where 

ℛ is the set of real numbers) is smooth 

and its gradient ∇𝑓(𝑘) is denoted by 𝑔(𝑘). 

The Mohamed (2020) method generates a 

sequence of iterates {𝑘𝑡} by the following 

recursive scheme: 

 

𝑘𝑡+1 = 𝑘𝑡 + 𝛼𝑡𝑗𝑡, 𝑡 ≥ 0, (3) 

 

where 𝑘𝑡 is the current iterative point and 

𝑘0 ∈ ℛ𝑛 is the starting point of the 

sequence. In (3), 𝛼𝑡 > 0 is known as the 

step length and 𝑗𝑡 is the search direction 

defined by the rule: 
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𝑗𝑡: = (

−𝑔𝑡 if t = 0,

−𝑔𝑡 + 𝛿𝑡
𝐻𝑆𝑀𝑅𝑗𝑡−1 if t > 0, (4) 

 

where 𝑔𝑡 = 𝑔(𝑘𝑡) and the conjugate gradient parameter 𝛿𝑡
𝐻𝑆𝑀𝑅 is defined as 

 

𝛿𝑡
𝐻𝑆𝑀𝑅: = max{0, min{𝛿𝑡

𝑆𝑀𝑅 , 𝛿𝑡
𝑅𝑀𝐼𝐿}}, (5) 

 

where 𝛿𝑡
𝑆𝑀𝑅: = max{0,

∥𝑔𝑡∥2−|𝑔𝑡
𝑇𝑔𝑡−1|

∥𝑗𝑡−1∥2
} and 𝛿𝑡

𝑅𝑀𝐼𝐿: =
𝑔𝑡

𝑇𝑦𝑡−1

∥𝑗𝑡−1∥2
, 𝑦𝑡−1: = 𝑔𝑡 − 𝑔𝑡−1. 

 

Next, we implement a derivative-free projection method, based on the HSMR method, to 

solve (1). The method we propose generates a sequence of iterates using the following 

relation: 

 

𝑣𝑡 = 𝑘𝑡 + 𝛼𝑡𝑗𝑡                                         (6) 

𝑗𝑡: = (

−𝑇𝑡 if t = 0,

−𝜃𝑡𝑇𝑡 + 𝛿𝑡
𝐸𝐻𝑆𝑀𝑅𝑗𝑡−1 if t > 0,                               (7) 

 

where 𝑇𝑡 = 𝑇(𝑘𝑡) and 𝛿𝑡
𝐸𝐻𝑆𝑀𝑅 is defined as 

 

              𝛿𝑡
𝐸𝐻𝑆𝑀𝑅: = max{0, min{𝛿𝑡

𝐸𝑆𝑀𝑅 , 𝛿𝑡
𝐸𝑅𝑀𝐼𝐿}}, (8) 

 

where 

𝛿𝑡
𝐸𝑆𝑀𝑅: = max{0,

∥ 𝑇𝑡 ∥2− |𝑇𝑡
𝑇𝑇𝑡−1|

∥ 𝑗𝑡−1 ∥2
} 

and 

𝛿𝑡
𝐸𝑅𝑀𝐼𝐿: =

𝑇𝑡
𝑇𝑦𝑡−1

∥ 𝑗𝑡−1 ∥2
, 𝑦𝑡−1: = 𝑇𝑡 − 𝑇𝑡−1. 

 

It can be observed that, for 𝑡 = 0, the direction (7) obviously satisfies the descent condition; 

that is, for all 𝑡 ≥ 0, if 𝑗𝑡 is generated by Algorithm 1, then 

 

𝑇𝑡
𝑇𝑗𝑡 = −𝑐 ∥ 𝑇𝑡 ∥2, 𝑐 > 0. (9) 

 

We first note that 

𝛿𝑡
𝐸𝐻𝑆𝑀𝑅 ≤ 𝛿𝑡

𝐸𝑅𝑀𝐼𝐿 .  (10) 

 

 

Thus, for 𝑡 > 0, we have 

𝑇𝑡
𝑇𝑗𝑡 = − (𝜃𝑡 −

∥𝑦𝑡−1∥

∥𝑗𝑡−1∥
) ∥ 𝑇𝑡 ∥2. 

 

To satisfy (9), it is only necessary that 

𝜃𝑡 ≥ 𝑐 +
∥ 𝑦𝑡−1 ∥

∥ 𝑗𝑡−1 ∥
. 
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In this paper, we choose 𝜃𝑡 as 

𝜃𝑡 = 𝑐 +
∥ 𝑦𝑡−1 ∥

∥ 𝑗𝑡−1 ∥
. 

 

Definition 1 

Let Λ ⊆ ℛ𝑛 be a nonempty closed convex set. Then, for any 𝑏 ∈ ℛ𝑛, its projection onto Λ, 

denoted by 𝑃Λ[𝑏], is defined by 

 

𝑃Λ[𝑏]: = argmin{∥ 𝑏 − 𝑎 ∥ ∶ 𝑎 ∈ Λ}. 
 

For any 𝑏, 𝑎 ∈ ℛ𝑛, the projection operator 𝑃Λ has the following nonexpansive property: 

 

∥ 𝑃Λ[𝑦] − 𝑃Λ[𝑥] ∥≤∥ 𝑦 − 𝑥 ∥. (11) 

 

In what follows, we state our method’s iterative procedures/steps. 

 

Algorithm 1 

 

Input. Set an initial point 𝑘0 ∈ Λ and the positive constants 𝑇𝑜𝑙 > 0, 𝑟 ∈ (0,1), 𝑥 ∈
(0,2), 𝑎 > 0, 𝜇 > 0. Set 𝑡 = 0. 
 

Step 0. Compute 𝑇𝑡. If ∥ 𝑇𝑡 ∥≤ 𝑇𝑜𝑙, stop. Otherwise, generate the search direction 𝑗𝑡 using 

(7). 

 

Step 1. Determine the step size 𝛼𝑡 = max{𝑎𝑟𝑚|𝑚 ≥ 0} such that 

 

𝑇(𝑘𝑡 + 𝛼𝑡𝑗𝑡)𝑇𝑗𝑡 ≥ 𝜇𝛼𝑡 ∥ 𝑗𝑡 ∥2. (12) 

 

Step 2. Compute 𝑣𝑡 = 𝑘𝑡 + 𝛼𝑡𝑗𝑡, where 𝑣𝑡 is a trial point. 

 

Step 3. If 𝑣𝑡 ∈ Λ and ∥ 𝑇(𝑣𝑡) ∥= 0, stop. Else, compute 

 

𝑘𝑡+1 = 𝑃Λ [𝑘𝑡 − 𝑥
𝑇(𝑣𝑡)𝑇(𝑘𝑡−𝑣𝑡)

∥𝑇(𝑣𝑡)∥2 𝑇(𝑣𝑡)].     (13) 

 

Step 4. Let 𝑡 = 𝑡 + 1. Then, return to step 1. 

 

 

3. GLOBAL CONVERGENCE 

In this section, we obtain the global 

convergence property of Algorithm 1 and 

list the following assumptions on the 

mapping T. 

 

Assumption 1 

(i) The solution set of constrained 

nonlinear equation (1), denoted 

by Λ∗, is nonempty. 

 

(ii) The mapping 𝑇 is Lipschitz 

continuous on ℛ𝑛. That is, 

there exists a constant 𝐿 > 0 

such that 

 

                       ∥ 𝑇(𝛼) − 𝑇(𝛿) ∥≤ 𝐿 ∥ 𝛼 − 𝛿 ∥ ∀𝛼, 𝛿 ∈ ℛ𝑛.                      (14) 
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(iii) For any 𝛿 ∈ Λ∗ and 𝛼 ∈ ℛ𝑛, it holds that 

 

                          𝑇(𝛼)𝑇(𝛼 − 𝛿) ≥ 0. (15) 

Lemma 1 

Let {𝑗𝑡} and {𝑘𝑡} be two sequences generated by Algorithm 1. Then, there exists a step size 

𝛼𝑡 satisfying the line search (12) for all 𝑡 ≥ 0. 
 

Proof. For any 𝑚 ≥ 0, suppose (12) does not hold for the iterate 𝑡0 −th. Then, we have 

 

−𝑇(𝑘𝑡0
+ 𝑎𝑟𝑚𝑗𝑡0

)𝑇𝑗𝑡0
< 𝜇𝑎𝑟𝑚 ∥ 𝑗𝑡0

∥2. 

 

Thus, by the continuity of T and with 0 < 𝑟 < 1, it follows that by letting 𝑚 → ∞, we have 

 

−𝑇(𝑘𝑡0
)𝑇𝑗𝑡0

≤ 0, 

 

which contradicts (9). 

 

Lemma 2 

Let the sequences {𝑘𝑡} and {𝑣𝑡} be generated by the Algorithm 1 method under Assumption 

1. Then, 

 

                                           𝛼𝑡 ≥ max {𝑎,
𝑟𝑐∥𝑇𝑡∥2

(𝐿+𝜇)∥𝑗𝑡∥2}.                                                (16) 

 

Proof. Let �̂�𝑡 = 𝛼𝑡𝑟−1. Assume 𝛼𝑡 ≠ 𝑎. However, �̂�𝑡 does not satisfy (12). That is, 

 

−𝑇(𝑘𝑡 + �̂�𝑡𝑗𝑡)𝑇𝑗𝑡 < 𝜇�̂�𝑡 ∥ 𝑗𝑡 ∥2. 
 

From (14) and (9), it can be seen that 

 

𝑐 ∥ 𝑇𝑡 ∥2≤ −𝑇𝑡
𝑇𝑗𝑡 

= (𝑇(𝑘𝑡 + �̂�𝑡𝑗𝑡) − 𝑇𝑡)𝑇𝑗𝑡 − 𝑇(𝑘𝑡 + �̂�𝑡𝑗𝑡)𝑇𝑗𝑡 

≤ 𝐿�̂�𝑡 ∥ 𝑗𝑡 ∥2+ 𝜇�̂�𝑡 ∥ 𝑗𝑡 ∥2 

≤ �̂�𝑡(𝐿 + 𝜇) ∥ 𝑗𝑡 ∥2. 
 

This gives the desired inequality (16).  

 

Lemma 3 

Suppose that Assumption 1 holds. Let {𝑘𝑡} and {𝑣𝑡} be sequences generated by Algorithm 1. 

Then, for any solution 𝑘∗ contained in the solution set Λ∗, the inequality 

 

∥ 𝑘𝑡+1 − 𝑘∗ ∥2≤∥ 𝑘𝑡 − 𝑘∗ ∥2− 𝜇2 ∥ 𝑘𝑡 − 𝑣𝑡 ∥4           (17) 

 

holds. In addition, {𝑘𝑡} is bounded and 

 

∑∞
𝑡=0 ∥ 𝑘𝑡 − 𝑣𝑡 ∥4< +∞.                         (18) 
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Proof. First, we begin by using the weak monotonicity assumption from Assumption 1 (ii) on 

the mapping T. Thus, for any solution 𝑘∗ ∈ Λ∗, 

 

𝑇(𝑣𝑡)𝑇(𝑘𝑡 − 𝑘∗) ≥ 𝑇(𝑣𝑡)𝑇(𝑘𝑡 − 𝑣𝑡). 
 

The above inequality, together with (12), gives 

 

𝑇(𝑘𝑡 + 𝛼𝑡𝑗𝑡)𝑇(𝑘𝑡 − 𝑣𝑡) ≥ 𝜇𝛼𝑡
2 ∥ 𝑗𝑡 ∥2≥ 0. (19) 

 

From (11) and (19), we have the following: 

∥ 𝑘𝑡+1 − 𝑘∗ ∥2= ‖𝑗Λ [𝑘𝑡 − 𝑥
𝑇(𝑣𝑡)𝑇(𝑘𝑡 − 𝑣𝑡)

∥ 𝑇(𝑣𝑡) ∥2
𝑇(𝑣𝑡)] − 𝑘∗‖

2

≤ ‖[𝑘𝑡 − 𝑥
𝑇(𝑣𝑡)𝑇(𝑘𝑡 − 𝑣𝑡)

∥ 𝑇(𝑣𝑡) ∥2
𝑇(𝑣𝑡)] − 𝑘∗‖

2

 

=∥ 𝑘𝑡 − 𝑘∗ ∥2− 2𝑥 (
𝑇(𝑣𝑡)𝑇(𝑘𝑡 − 𝑣𝑡)

∥ 𝑇(𝑣𝑡) ∥2
) 𝑇(𝑣𝑡)𝑇(𝑘𝑡 − 𝑘∗)

+ 𝑥2 (
𝑇(𝑣𝑡)𝑇(𝑘𝑡 − 𝑣𝑡)

∥ 𝑇(𝑣𝑡) ∥
)

2

 

=∥ 𝑘𝑡 − 𝑘∗ ∥2− 2𝑥 (
𝑇(𝑣𝑡)𝑇(𝑘𝑡 − 𝑣𝑡)

∥ 𝑇(𝑣𝑡) ∥2
) 𝑇(𝑣𝑡)𝑇(𝑘𝑡 − 𝑣𝑡)

+ 𝑥2 (
𝑇(𝑣𝑡)𝑇(𝑘𝑡 − 𝑣𝑡)

∥ 𝑇(𝑣𝑡) ∥
)

2

=

∥ 𝑘𝑡 − 𝑘∗ ∥2− 𝑥(2 − 𝑥) (
𝑇(𝑣𝑡)𝑇(𝑘𝑡 − 𝑣𝑡)

∥ 𝑇(𝑣𝑡) ∥
)

2

≤∥ 𝑘𝑡 − 𝑘∗ ∥2. 

 

Thus, the sequence {∥ 𝑘𝑡 − 𝑘∗ ∥} has a nonincreasing and convergent property. Therefore, 

{𝑘𝑡} is a bounded sequence; that is, ∀𝑡, 
 

∥ 𝑘𝑡 ∥≤ 𝑏0, 𝑏0 > 0, (20) 

 

and therefore the following holds: 

 

𝜎2 ∑

∞

𝑡=0

∥ 𝑘𝑡 − 𝑣𝑡 ∥4<∥ 𝑘0 − 𝑘∗ ∥2< +∞. 

 

Remark 1 

Considering the definition of 𝑣𝑡 and also (18), it can be deduced that 

lim
𝑡→∞

𝛼𝑡 ∥ 𝑗𝑡 ∥= 0.                                    (21) 

Theorem 1 

Suppose Assumption 1 holds. Let {𝑘𝑡} and {𝑣𝑡} be sequences generated by Algorithm 1. Then, 

 

lim inf
𝑡→∞

∥ 𝑇𝑡 ∥= 0.                                         (22) 

 

  



Malaysian Journal of Science 40(3): 64-75 (Oct 2021) 

 

70 

 

Proof. Suppose (22) is not valid; that is, there exists a constant, say, 𝑠 > 0 such that 𝑠 ≤∥ 𝑇𝑡 ∥
, 𝑡 ≥ 0. Then this, along with (9), implies that 

 

∥ 𝑗𝑡 ∥≥ 𝑐𝑠,    ∀𝑡 ≥ 0.                                    (23) 

 

It can be seen from Lemma 3 and Remark 1 that the sequences {𝑘𝑡} and {𝑣𝑡} are bounded. 

Also, the continuity of 𝑇 further implies that {∥ 𝑇𝑡 ∥} is bounded by a constant, say, 𝑢. From 

(7) and (10), it follows that for all 𝑡 ≥ 1, 
 

∥ 𝑗𝑡 ∥= ‖−𝜃𝑡𝑇𝑡 + 𝛿𝑡
𝐸𝐻𝑆𝑀𝑅𝑗𝑡−1‖ 

       = ‖− (𝑐 +
∥ 𝑦𝑡−1 ∥

∥ 𝑗𝑡−1 ∥
) 𝑇𝑡 + 𝛿𝑡

𝐸𝐻𝑆𝑀𝑅𝑗𝑡−1‖ 

                                     ≤ 𝑐 ∥ 𝑇𝑡 ∥ +
∥ 𝑦𝑡−1 ∥

∥ 𝑗𝑡−1 ∥
∥ 𝑇𝑡 ∥ +|𝛿𝑡

𝐸𝐻𝑆𝑀𝑅| ∥ 𝑗𝑡−1 ∥ 

                                       ≤ 𝑐 ∥ 𝑇𝑡 ∥ +
∥ 𝑦𝑡−1 ∥

∥ 𝑗𝑡−1 ∥
∥ 𝑇𝑡 ∥ +

∥ 𝑦𝑡−1 ∥

∥ 𝑗𝑡−1 ∥
∥ 𝑇𝑡 ∥ 

        = 𝑐 ∥ 𝑇𝑡 ∥ +2
∥ 𝑦𝑡−1 ∥

∥ 𝑗𝑡−1 ∥
∥ 𝑇𝑡 ∥ 

                      ≤ 𝑐 ∥ 𝑇𝑡 ∥ +2
𝐿 ∥ 𝑘𝑡 − 𝑘𝑡−1 ∥

∥ 𝑗𝑡−1 ∥
 

≤ 𝑐𝑢 + 4𝐿
𝑏0𝑢

𝑐𝑠
≜ 𝛾. 

From (16), we have 

𝛼𝑡 ∥ 𝑗𝑡 ∥≥ max {𝑎,
𝑟𝑐 ∥ 𝑇𝑡 ∥2

(𝐿 + 𝜇) ∥ 𝑗𝑡 ∥2
} ∥ 𝑗𝑡 ∥ 

≥ max{𝑎𝑐𝑠,
𝑟𝑐𝑠2

(𝐿 + 𝜇)𝛾
} > 0, 

 

which contradicts (21). Hence, (22) is 

valid. 

 

 

4.   NUMERICAL EXPERIMENT 

 

This section assesses the 

computational efficiency of the proposed 

algorithm using the Dolan and Moré 

(2002) performance profile, whose metric 

takes into consideration the number of 

iterations, the number of function 

evaluations and the running time of the 

CPU. The performance of Algorithm 1, 

which we will refer to as Extended HSMR 

(EHSMR), is compared with the 

derivative-free iterative method proposed 

in Ibrahim et al. (2019) and Lieu and Feng 

(2019). We refer to these two methods as 

ERMIL and PDY. We note that all codes 

were coded and implemented in the 

MATLAB environment. The control 

parameters for EHSMR were chosen as 

𝑎 = 1, 𝑟 = 0.75, 𝜇 = 10−4, 𝑥 =
1.2 and 𝑇𝑜𝑙 = 10−6. The parameters for 

ERMIL and PDY were set as reported in 

the numerical section of their respective 

papers. We made use of various 

dimensions, including 

1000, 5000, 10,000, 50,000,100,000 and 

different initial points: 𝑘1 =
(0.1,0.1, ⋯ ,0.1)𝑇, 𝑘2 =
(0.2,0.2, ⋯ ,0.2)𝑇, 𝑘3 = (0.5,0.5, … ,0.5)𝑇, 

𝑘4 = (1.2,1.2, ⋯ ,1.2)𝑇, 𝑘5 =
(1.5,1.5, ⋯ ,1.5)𝑇, 𝑘6 = (2,2, … ,2)𝑇 and 

𝑘7 = rand(0,1). In what follows, we give 

the list of test problems used for the 

experiment. We note that the 𝑇 =
(𝑇1, 𝑇2, ⋯ , 𝑇𝑛) are given below: 
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Problem 1 (Ding et al., 2017) 

 

𝑡𝑖 = ∑

𝑛

𝑖=1

𝑘𝑖
2, 𝑑 = 10−5.

𝑇𝑖(𝑘) = 2𝑑(𝑘𝑖 − 1) + 4(𝑡𝑖 − 0.25)𝑘𝑖, 𝑖 = 1,2,3, … , 𝑛 and Λ = ℛ+
𝑛 .

 

 

 

Problem 2 The Trig exp function, (La Cruz et al., 2006) 

 

𝑇1(𝑘) = 3𝑘1
3 + 2𝑘2 − 5 + sin(𝑘1 − 𝑘2)sin(𝑘1 + 𝑘2)

𝑇𝑖(𝑘) = 3𝑘𝑖
3 + 2𝑘𝑖+1 − 5 + sin(𝑘𝑖 − 𝑘𝑖+1) sin(𝑘𝑖 + 𝑘𝑖+1) + 4𝑘𝑖 − 𝑘𝑖−1𝑒𝑘𝑖−1−𝑘𝑖 − 3   

𝑇𝑛(𝑘) = 𝑘𝑛−1𝑒𝑘𝑛−1−𝑘𝑛 − 4𝑘𝑛 − 3,    where h =
1

𝑚 + 1
and Λ = ℛ+

𝑛 .

 

 

Problem 3 Nonsmooth Function, 3 (Yu et al., 2009) 

 
𝑇𝑖(𝑘) = 𝑘𝑖 − sin|𝑘𝑖 − 1|, 𝑖 = 1,2,3, . . . , 𝑛,

andΛ = {𝑘 ∈ ℛ𝑛: ∑

𝑛

𝑖=1

𝑘𝑖 ≤ 𝑛, 𝑘𝑖 ≥ −1, 𝑖 = 1,2, ⋯ , 𝑛} .
 

 

Problem 4 Tridiagonal Exponential Function, (Bing & Lin, 1991) 

 

𝑇1(𝑘) = 𝑘1 − 𝑒cos(ℎ(𝑘1+𝑘2)),

𝑇𝑖(𝑘) = 𝑘𝑖 − 𝑒cos(ℎ(𝑘𝑖−1+𝑘𝑖+𝑘𝑖+1)), for𝑖 = 2, . . . , 𝑛 − 1,

𝑇𝑛(𝑘) = 𝑘𝑛 − 𝑒cos(ℎ(𝑘𝑛−1+𝑘𝑛)),

ℎ =
1

𝑛 + 1
.

 

 

Problem 5 Strictly Convex Function II, (La Cruz et al., 2006) 

 

𝑇𝑖(𝑘) =
𝑖

𝑛
𝑒𝑘𝑖 − 1, for𝑖 = 1,2, . . . , 𝑛,

and Λ = ℛ+
𝑛 .

 

 

Problem 6  Strictly Convex Function I, (La Cruz et al., 2006) 

 

𝑇𝑖(𝑘) = 𝑒𝑘𝑖 − 1, for𝑖 = 1,2, . . . , 𝑛,

and Λ = ℛ+
𝑛 .

 

 

Problem 7 (Ding et al., 2017) 

 

𝑇𝑖(𝑘) = min(min(|𝑘𝑖|, 𝑘𝑖
2), max(|𝑘𝑖|, 𝑘𝑖

3))for𝑖 = 2,3, . . . , 𝑛,

and Λ = ℛ+
𝑛 .

 

 

  



Malaysian Journal of Science 40(3): 64-75 (Oct 2021) 

 

72 

 

Problem 8 Modified Logarithmic Function, (La Cruz et al., 2006) 

 

𝑇𝑖(𝑘) = ln(𝑘𝑖 + 1) −
𝑘𝑖

𝑛
, for𝑖 = 1,2,3, . . . , 𝑛,

and Λ = {𝑘 ∈ ℛ𝑛: ∑

𝑛

𝑖=1

𝑘𝑖 ≤ 𝑛, 𝑘𝑖 > −1, 𝑖 = 1,2, ⋯ , 𝑛} .
 

 

Problem 9 Exponential Function, (La Cruz et al., 2006) 

 

𝑇1(𝑘) = 𝑒𝑘1 − 1,

𝑇𝑖(𝑘) = 𝑒𝑘𝑖 + 𝑘𝑖 − 1, for𝑖 = 2,3, . . . , 𝑛,

and Λ = ℛ+
𝑛 .

 

 

  

The performance results of the 

methods for problems 1–5 are presented in 

Tables 1–5 of the appendix section which 

can be found in the following link; 

https://documentcloud.adobe.com/link/rev

iew?uri=urn:aaid:scds:US:738a210f-a99-

4260-9612-c7ab7d34dcaa.  

     

             In Tables 1–5, 'dm' denotes the 

dimension, 'inp' denotes the initial points, 

'it' denotes the iteration number, 'nf' 

denotes the function evaluation number 

and 'tm' denotes the CPU running time. 

Figure 1 shows the iteration performance 

profiles of the three methods. The EHSMR  

 

 

 

algorithm’s results can be seen in the top 

curve. EHSMR outperformed ERMIL and 

PDY, with EHSMR solving 69% of the test 

problems with few iterations and ERMIL 

and PDY solving about 41% and 21%, 

respectively. The profile of the number of 

function evaluations is reported in Figure 

2. We note that EHSMR performed better 

than the other two methods. EHSMR was 

able to solve about 63% of the test 

problems with few iterations, while 

ERMIL and PDY were able to solve about 

40% and 20%, respectively. Figure 3 

shows the CPU time performance profiles. 

EHSMR required the shortest CPU time. 

 

Figure 1.  Performance profiles based on number of iterations 
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Figure 2.  Performance profiles based on the number of function evaluations. 

 

 
Figure 3. Performance profiles based on the CPU time (in seconds). 

 

 

5.    CONCLUSION 
 

In this paper, we have extended the 

HSMR conjugate gradient method for 

unconstrained optimisation problems to 

solve a nonlinear equation with convex 

constraints. The proposed method is 

derivative-free and satisfies the sufficient 

descent condition. Global convergence is 

proved under the assumption that the 

underlying mapping is Lipschitz  

continuous and satisfies a weaker  

monotonicity condition. Numerical 

experiments show that the proposed 

method is efficient. 
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